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• We propose a two-stage domain adaptation framework for cross-domain
video summarization, addressing domain shift by enhancing the model’s
generalization and adaptation abilities.

• At the vendor stage, we introduce a straightforward yet effective reg-
ularized feature encoder based on Transformer to improve the model’s
generalization ability across diverse domains.

• At the client stage, we design a discrepancy reduction loss with confi-
dence weighting to mitigate domain shift by adapting the model to a
specific target domain.

• Experiments across various datasets and evaluation metrics demon-
strate that our method outperforms the state-of-the-art methods.
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Abstract

Video summarization aims to extract salient segments from videos to con-
struct concise and comprehensive synopses. Despite significant advance-
ments, the diversity of video content and the constraint of limited training
data pose challenges when applying trained models to new scenarios, often
resulting in the domain shift problem. To address this challenge, we propose
a domain adaptation framework tailored to video summarization from two
aspects: (a) enhancing the generalization ability and (b) improving the adap-
tive ability of video summarization models. Specifically, we design a simple
yet effective regularized feature encoder based on Transformer, where an av-
eraging operation on attention weights serves as a form of regularization.
This method mitigates overfitting to domain-specific cues and encourages
the learning of more generalizable representations across diverse domains.
Furthermore, we introduce a novel discrepancy reduction loss that aligns
the distribution of inter-frame feature similarities and inter-frame prediction
similarities, combined with a confidence weighting strategy, to adapt the
regularized encoder to target domains and mitigate domain shift. Extensive
experiments on multiple benchmark datasets demonstrate the effectiveness of
our method. Our method achieves state-of-the-art performance under var-
ious settings on TVSum and SumMe, and obtains the best results on the
transfer setting of Mr.HiSum.
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Figure 1: The domain adaptation framework for cross-domain video summarization. The
vendor stage improves the generalization of the model in different domains, and the client
stage alleviates the domain shift by adapting the model to a specific target domain.

1. Introduction

Video summarization focuses on automatically creating a concise and
comprehensive synopsis of an input video by extracting its significant and rep-
resentative segments. This field finds extensive applications in video-sharing
platforms and the video surveillance industry. Many existing supervised
video summarization methods [1, 2, 3] assume that the training and testing
data follow the same distribution. However, this assumption is impractical
in real-world scenarios, since the target testing domain often presents a dis-
tinct data distribution from the source training domain. Such differences,
characterized by variations in appearance, illumination, and background, are
commonly referred to as domain shift.

To address the domain shift problem, cross-domain methods have emerged
as a solution by transferring knowledge from a labeled source domain to an
unlabeled target domain. Zhang et al. [4] borrow the ideas from object
recognition [5, 6, 7], and introduce a simple cross-domain method [8] called
CORAL into video summarization for the first time, which minimizes do-
main shift by aligning the second-order statistics of source and target dis-
tributions, without requiring any target labels. In addition, Ho et al. [9],
inspired by [10], explore the cross-domain feature embedding. They propose
a novel deep neural network architecture for describing and discriminating
vital spatiotemporal information across videos with different points of view.
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While these methods achieve promising results, they only consider improv-
ing the adaptive ability of the video summarization model. In contrast, our
method tackles the domain shift problem from two aspects: enhancing the
generalization ability and improving the adaptive ability, achieving better
performance.

This paper presents an innovative domain adaptation framework designed
for cross-domain video summarization, which tackles the intricate problem
of domain shift by focusing on two pivotal aspects: enhancing the generaliza-
tion ability and improving the adaptive ability. We describe this framework
through two stages: the vendor stage and the client stage, as shown in Fig-
ure 1. The vendor stage is dedicated to augmenting the generalization ability
of the source model across diverse domains, and the client stage focuses on
adapting the source model to a specific target domain. In the vendor stage,
the source model is trained to generalize well across multiple domains with-
out accessing target data. In contrast, the client stage aims at adapting the
source model to a specific target domain using only unlabeled target data.
To achieve effective domain generalization and adaptation, both stages in-
corporate tailored learning strategies.

In the vendor stage, we propose a simple yet effective regularized fea-
ture encoder based on Transformer [11] to learn robust frame features across
diverse domains. Traditional Transformer-based attention mechanisms com-
pute pairwise similarities between frames. While this formulation is theoret-
ically capable of modeling global information, in practice, especially when
faced with domain shifts, the attention may become biased toward pairwise
visual similarities, potentially leading to overfitting to domain-specific cues.
To address this, we design an average pooling operation on the attention
weights, replacing the standard value-weighted summation in self-attention.
The averaging operation acts as a form of regularization, mitigating the risk
of the model overfitting to spurious pairwise similarities and encouraging the
learning of more generalizable representations. By smoothing the attention
distribution, this regularization enhances the model’s generalization ability
across diverse domains.

The effectiveness of the proposed method is demonstrated through com-
prehensive experiments on four benchmark datasets: TVSum [12], SumMe [13],
FPVSum [9], and Mr.HiSum [14]. Our method consistently achieves com-
petitive results when compared with state-of-the-art methods. The main
contributions of our work are summarized as follows:
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Figure 2: The framework of our method. At the vendor stage, we propose a straightforward
yet effective regularized feature encoder based on Transformer to extract video features.
At the client stage, we design a discrepancy reduction loss to adapt the regularized feature
encoder to target domains and a confidence weighting strategy to assign different weights
to samples during the computation of the discrepancy reduction loss.

• We first propose a two-stage domain adaptation framework for cross-
domain video summarization, addressing domain shift by enhancing
the model’s generalization and adaptation abilities.

• At the vendor stage, we introduce a straightforward yet effective regu-
larized feature encoder based on Transformer to improve generalization
across diverse domains.

• At the client stage, we design a discrepancy reduction loss with confi-
dence weighting to mitigate domain shift by adapting the model to a
specific target domain.

The remainder of this paper is organized as follows. Section 2 reviews
the related work on video summarization and cross-domain methods in video
summarization. Section 3 details the proposed method, including the vendor
stage and the client stage. Section 4 presents extensive experiments to eval-
uate the effectiveness of the proposed method, and Section 5 points out the
limitations and future work of this paper. Finally, Section 6 concludes the
paper.
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2. Related Work

2.1. Video Summarization

Early video summarization methods generate video summaries by clus-
tering low-level visual features, such as color histograms [15], spatio-temporal
features [16], and motion cues [17]. With the considerable progress of deep
learning in video processing and understanding, deep learning-based meth-
ods have been proposed. Zhao et al. [18] propose a fixed-length hierarchical
RNN, while Zhao et al. [19] introduce a hierarchical structure-adaptive LSTM
to model the underlying hierarchical structure of videos. More recently, the
self-attention mechanism has been widely employed in video summarization.
Zhong et al. [20] introduce a self-attention mechanism to address the diffi-
culty of modeling temporal information over long time spans. Zhu et al. [3]
propose a multiscale hierarchical attention approach to learn local and global
information. Beyond general video summarization methods, recent studies
incorporate domain knowledge, such as audio-visual cues and user prefer-
ences, to enable personalized and dynamic summarization [21, 22, 23, 24].

All these methods heavily rely on the assumption that the training and
testing data follow the same distribution. To transcend this assumption
and render video summarization more practical for real-world applications,
we propose a domain adaptation framework tailored to cross-domain video
summarization, which aims to alleviate the domain shift from the aspects of
generalization ability and adaptive ability.

2.2. Cross-domain technology in Video Summarization

Cross-domain techniques have gained increasing attention in video sum-
marization, enabling knowledge transfer from the source domain to the tar-
get domain. Borrowing the ideas from object recognition [5, 6, 7], Zhang et
al. [4] first introduce a simple cross-domain method [8] called CORAL into
video summarization to reduce the data distribution discrepancy among dif-
ferent datasets. More concretely, they align the distributions by re-coloring
whitened source features with the covariance of the target distribution. In
addition, inspired by [10], Ho et al. [9] propose a novel deep neural network ar-
chitecture for describing and discriminating vital spatiotemporal information
across videos with different points of view. More specifically, they perform
cross-domain feature embedding and transfer representative highlight infor-
mation across different domains through an auxiliary reconstruction task.
Additionally, Jiang and Mu [25] utilize external training data from the video
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moment localization task to alleviate the lack of labeled data in video summa-
rization and improve the generalization ability of their model across different
datasets.

While these methods achieve promising results, they only consider im-
proving the adaptive ability of the video summarization model. In contrast,
our method tackles the domain shift problem from two aspects: enhancing
the generalization ability and improving the adaptive ability, achieving better
performance.

3. Our Method

3.1. Overview

Video summarization aims to extract the most significant and represen-
tative segments of a video to create a concise summary. The input consists
of a sequence of video frames, and the goal is to predict an importance score
for each frame that indicates its relevance within the context of the entire
video. These scores are then used to calculate the average importance of each
pre-divided segment of fixed length in the video, to select key segments to
make up the video summary. In this paper, we propose a two-stage method,
consisting of a vendor stage and a client stage, to enhance both the gener-
alization and adaptation capabilities of a video summarization model. The
vendor stage focuses on learning a generalized Transformer model that im-
proves the robustness of frame representations across different domains by
introducing a regularization effect in the attention mechanism. The client
stage aims to improve the model’s performance on target-specific data by
minimizing domain shifts and refining the model with unlabeled target video
data. Figure 2 illustrates the overview of our method. Following prior works,
we directly use frame-level features extracted from GoogLeNet [26] as the in-
put to our model.

3.2. Vendor Stage

The vendor stage aims to enhance the generalization ability of the source
model, preparing it for effective adaptation to the target domain. To achieve
this, we focus on learning a generalized Transformer in which an averaging
operation is applied to the attention weights. This averaging acts as a form of
regularization, smoothing the attention distribution and reducing the model’s
reliance on potentially spurious pairwise similarities that are sensitive to
domain-specific variations. By regularizing the attention mechanism in this
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way, the model is encouraged to learn more generalizable and robust frame
representations, which are less likely to overfit to the source domain and
thus better suited for transfer to new domains. This regularization strategy is
particularly beneficial in video summarization, where the diversity of content
and limited training data can otherwise lead to poor generalization.

Building on this insight, we modify the self-attention operation in a single-
layer Transformer to extract frame features by replacing the standard value-
weighted summation with global aggregation of attention weights, which are
computed from the dot product of the key and query vectors. Specifically,
the proposed model consists of two modules: a regularized feature encoder
and a score evaluation module. We choose a single-layer Transformer encoder
as the regularized feature encoder, and the input sequence of frame features
extracted by GoogLeNet [26] is denoted by X = [v1, v2, ..., vn]⊤, X ∈ Rn×dm ,
where n is the number of frames and dm is the dimension of the frame feature.
Then for the h-th head in the multi-head self-attention, we can obtain an
attention weight matrix Ah ∈ Rn×n by

Qh = XWQ
h , Kh = XWK

h , h = 1, · · · , H, (1)

Ah = Softmax(
QhK

⊤
h√

dk
), (2)

where H is the number of heads in the multi-head attention mechanism and
Qh, Kh ∈ Rn×dk denote the query and key matrices of the h-th attention
head, WQ

h ∈ Rdm×dk , WK
h ∈ Rdm×dk are the learnable attention parameters,

and dk = dm/H.
To obtain the regularized attention of each frame, we use an adaptive

average pooling layer to aggregate the similarity between each frame and
other frames globally. Then, a fully connected layer is adopted to remap the
regularized attention of all frames back to the same dimension as the query
and key vectors, allowing the model to reallocate feature importance based
on the pooled results. The process can be formulated as:

Âh = Pool(Ah), (3)

Oh = FC(Âh), (4)

where Âh ∈ Rn×1 denotes the regularized attention of all frames, Pool(·) de-
notes the adaptive average pooling layer, and FC(·) is a fully connected layer,
and Oh ∈ Rn×dk denotes the result of the h-th attention head. In this way,
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we reduce extreme values in the attention matrix, prevent individual frames
from obtaining excessively high or low weights, and enhance the stability of
the model.

After calculating the result of each self-attention head, we concatenate the
attention result of each head and obtain the multi-head attention result by
M = Concat(O1, O2, ..., OH), where M ∈ Rn×dm . The multi-head attention
result M is then fed into a non-linear three-layer network, which can be
formulated as:

F = max(0,MW1 + b1) ·W2 + b2, (5)

where F ∈ Rn×dm denotes the frame features finally extracted by the pro-
posed regularized feature encoder and W1 ∈ Rdm×df , W2 ∈ Rdf×dm are the
learnable parameters for the non-linear network.

It is worth knowing that we apply residual connection when calculating
the result of multi-head attention and the final feature, to preserve original
frame-level information to a certain degree. Additionally, we attach Layer
Normalization after each residual connection for better convergence. Resid-
ual connections and layer normalization are together represented as “Add &
Norm” blocks in Figure 2, which are attached after the multi-head attention
and the non-linear feed-forward layer.

Finally, the score evaluation module consists of two fully connected layers.
The detailed formula is as follows:

Ŝ = FC2(LayerNorm(FC1(F )))) (6)

where FC1(·) is a fully connected layer with ReLU activation function to
transform the dimension of F from Rn×dm to Rn×128, LayerNorm(·) denotes
layer normalization and FC2(·) is a single linear layer to get the predicted
importance score Ŝ ∈ Rn.

In training, we make use of the ground truth frame-level importance scores
to supervise the learning process. Given the ground truth frame scores Sgt ∈
Rn and the predicted frame scores Ŝ, we adopt the mean squared error (MSE)
as the loss function:

Lmse =
1

n

∥∥∥Ŝ − Sgt

∥∥∥2

2
. (7)

3.3. Client Stage

The client stage serves the purpose of improving the model’s adaptive
ability, leveraging the potential of unlabeled target data. We design a novel
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discrepancy reduction loss to adapt the regularized feature encoder to alle-
viate the domain shift and introduce a confidence weighting strategy that
assigns different weights to samples during the computation of the discrep-
ancy reduction loss.

3.3.1. Discrepancy Reduction Loss

We adapt the regularized feature encoder while keeping the score evalua-
tion module unchanged to facilitate adaptation to the target domain. Specif-
ically, we aim to better align the output features of the regularized feature
encoder to the source feature distribution, thereby reducing the impact of do-
main shift and improving the accuracy of frame importance score predictions
in the target domain. We find that the similarity between frame features is
strongly correlated with the similarity between their importance scores in a
well-trained source model for video summarization. Specifically, frame fea-
tures that are close to each other in the feature space tend to have similar
importance scores. Motivated by this, we propose a discrepancy reduction
loss function to adapt the regularized feature encoder by constraining the
pairwise similarities of target features to better align with the importance
score similarities predicted by the source model.

We model the feature distribution of video frames as a pairwise similarity-
based probability distribution P based on feature distances. Given the frame
features F = {f1, f2, ..., fn} of the m-th video, their probability distributions
are calculated as follows:

Pm(j|i) =
exp(D(fi, fj))∑

k ̸=i

exp(D(fi, fk))
, j ̸= i, i = 1, ..., n, (8)

where D(fi, fj) is the distance metric between fi and fj, and we employ cosine
similarity as the distance metric in our implementation. Similarly, we model
the importance score distribution as another probability distribution P ′ based
on the distances between predicted importance scores. Given the predicted
importance scores Ŝ = {ŝ1, ŝ2, ..., ŝn} of the m-th video, their probability
distributions are calculated by

P ′
m(j|i) =

exp(D′(ŝi, ŝj))∑
k ̸=i

exp(D′(ŝi, ŝk))
, j ̸= i, i = 1, ..., n, (9)

where D′(ŝi, ŝj) = −|ŝi − ŝj| is the distance metric for importance scores.
A higher similarity between importance scores results in a greater distance,
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ensuring that the probability distributions reflect their relative importance
differences.

Finally, we use KL divergence to measure the discrepancy between the
feature distribution and the importance score distribution, i.e., the discrep-
ancy reduction loss Ld of the m-th video, formulated as

Ld =
1

n

n∑
i=1

∑
j ̸=i

P ′
m(j|i) log(

P ′
m(j|i)

Pm(j|i)
). (10)

We minimize the discrepancy reduction loss to constrain the similarities of
target features between frames to be closer to those of importance scores, as
predicted by the source model for the same frame pairs.

3.3.2. Confidence Weighting Strategy

To further improve performance, we design a confidence weighting strat-
egy that assigns different weights to samples according to their confidence
during the computation of the discrepancy reduction loss. Specifically, we use
the KL divergence between the target feature distribution and the importance
score distribution predicted by the source model to assess the confidence of
each video frame. The smaller the KL divergence, the higher the confidence
of the sample. Next, we use the Softmax function to calculate the weight
of each video frame sample. For the m-th target video with n frames, the
confidence weight is calculated by

Confi = −
∑
j ̸=i

P ′
m(j|i) log(

P ′
m(j|i)

Pm(j|i)
), i = 1, ..., n,

Wi =
exp(Confi)∑
j exp(Confj)

, i = 1, ..., n,

W ′
i =

exp(−Confi)∑
j exp(−Confj)

, i = 1, ..., n,

(11)

where W represents a positive weight, increasing with higher confidence. W ′

is a negative weight, which increases as confidence decreases.
We incorporate these confidence weights into the discrepancy reduction

loss from two perspectives. When measuring the discrepancy between the fea-
ture distribution and the importance score distribution, the positive weight
Wi helps refine the discrepancy measurement, making it more reliable. When
calculating the total loss, the negative weight W ′

i emphasizes low-confidence
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Table 1: Different settings on the TVSum, SumMe and FPVSum datasets.

Dataset Setting Training Set Testing Set

SumMe

Canonical 80% SumMe 20% SumMe

Augmented
80% SumMe + TVSum
+ OVP + YouTube

20% SumMe

Transfer
TVSum + OVP +
YouTube

SumMe

TVSum

Canonical 80% TVSum 20% TVSum

Augmented
80% TVSum + SumMe
+ OVP + YouTube

20% TVSum

Transfer
SumMe + OVP +
YouTube

TVSum

FPVSum –
25% FPVSum + TVSum
+ 80% SumMe

20% SumMe

samples, ensuring they contribute more to the optimization. The weighted
discrepancy reduction loss for the m-th target video is given by

Lw
d = n

n∑
i=1

W ′
i

∑
j ̸=i

WjP
′
m(j|i) log(

P ′
m(j|i)

Pm(j|i)
). (12)

3.4. Video Summary Generation

After the vendor stage and client stage training processes, the learned
model is used to perform video summarization in a unified pipeline. Specif-
ically, given an input video, we use GoogLeNet to extract frame features
as the pre-processing stage. Then the regularized feature encoder predicts
an importance score for each frame, reflecting its relevance to the overall
video content. These importance scores are then averaged over pre-divided
segments, and the segments with the highest average importance scores are
selected to form the final video summary. This two-stage design ensures
that the model can first capture generalized representations across domains
and subsequently adapt to the target domain’s distribution, leading to more
accurate and robust summarization results.

4. Experiment

4.1. Dataset

Our method’s effectiveness is demonstrated through comprehensive ex-
periments on four benchmark datasets: TVSum [12], SumMe [13], FPV-
Sum [9], and Mr.HiSum [14]. TVSum contains 50 videos sourced from
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YouTube, each annotated with shot-level importance scores by 20 users.
These videos cover 10 distinct categories, with 5 videos per category. The
categories include News, How-to/tutorials, Documentaries, Vlogs, Egocentric
videos, User-generated content, Flash mob gatherings, Educational content,
Interviews, and Event logs. SumMe contains 25 user-generated videos, rang-
ing from 1 to 6.5 minutes in length. These videos cover a variety of topics,
including Holidays, Events, Sports, Airplane landings, and Extreme sports.
Following the protocol in [4], we introduce YouTube [15] and Open Video
Project (OVP) [15, 27] datasets to build the FPVSum dataset, which com-
prises 56 labeled videos.

The details are shown in Table 1, where the transfer setting divides com-
pletely different datasets into training and testing sets to simulate cross-
domain scenarios. For FPVSum, we introduce third-person videos from TV-
Sum and SumMe into the training set, and first-person videos into the testing
set, following the protocol in [9], where domain shifts are caused by differ-
ent perspectives. The transfer setting of both SumMe and TVSum, together
with the FPVSum dataset, is used as the domain adaptation setting.

In addition, we conduct experiments on Mr.HiSum [14], a large-scale video
summarization dataset. Mr.HiSum consists of 31,892 videos sourced from
YouTube-8M, with each video annotated with highlight labels based on ag-
gregated viewing behavior data from over 50,000 viewers. This annotation
method addresses the subjectivity and cost issues of traditional manual an-
notation, providing high-quality highlight labels that are well-suited for video
highlight detection and summarization tasks.

4.2. Evaluation Metric

To evaluate the performance of our method, we employ the F-score as
a metric for measuring the agreement between generated summaries and
ground-truth summaries. Let X denote the generated summary for a video
and Y denote the ground-truth summary. For each video, the F-score is
calculated by

F =
2 · P ·R
P + R

,

P =
overlapped duration of X and Y

duration of X
,

R =
overlapped duration of X and Y

duration of Y
,

(13)

where P and R represent the precision and recall for each video, respectively.
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We also employ rank-based evaluation [29] for evaluation. It computes
two rank correlation coefficients, Kendall’s τ and Spearman’s ρ, based on the
predicted frame-level scores and the scores annotated by humans.

4.3. Implementation Details

The dimension dm of features extracted by GoogLeNet [26] is fixed at
1024, the head number H in multi-head attention is set to 8, and the dimen-
sion of the position-wise feed-forward networks df is set to 2048. For the
vendor stage, we use the Adam optimizer [28] with a learning rate of 0.0002
and a weight decay of 0.1. The source-only model is trained in 100 epochs
with a warmup strategy [29] in the first 10 epochs. For the client stage, we
set the learning rate to 0.00002 and the weight decay to 0.01 to fine-tune the
source model in 100 epochs, and also use a warmup strategy in the first 10
epochs. For all settings of all datasets, we randomly divide the dataset into
5 splits and run our method five times for each setting to report the average
performance of these five runs. All experiments are conducted on a single
NVIDIA RTX 3090 GPU with 24 GB of graphics memory.

4.4. Quantitative Evaluation

4.4.1. Quantitative Comparison Results

We compare our method with several state-of-the-art methods under dif-
ferent settings, including cross-domain video summarization methods (vsLSTM [4],
dppLSTM [4], DSN [10] and FPVS [9]), and standard video summariza-
tion methods (VASNet [30], SUM-FCN [1], DR-DSN [31], A-AVS [32], M-
AVS [32], DSNet [2], MSVA [35], RSGN [36], 3DST-UNetssup [37] and RR-
STG [38]).

Table 2 and 3 show the comparison results (F-score) with state-of-the-
art video summarization methods on the TVSum, SumMe, and FPVSum
datasets, respectively. We can have observations as follows. First, the exten-
sive experiments on three different datasets have demonstrated the effective-
ness of our method in different scenarios. Second, our method yields more
favorable results compared with the cross-domain methods, which clearly
demonstrates the effectiveness of the proposed discrepancy reduction loss
in encouraging well alignment between the target feature distribution and
the source feature distribution, as well as the effectiveness of the confidence
weighting strategy in making full use of the target data. Finally, our method
consistently achieves better results than the standard video summarization
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Table 2: Performance comparison in terms of F-score against state-of-the-art video sum-
marization methods on the TVSum and SumMe datasets under canonical, augmented,
and transfer settings. “Adapt.” indicates whether the method adapts the source model to
the target domain using target unlabeled data.

Method Venue Adapt.
TVSum SumMe

Can Aug Tran Can Aug Tran

VASNet [30] ACCV’18 ✘ 61.4 62.4 – 49.7 51.1 –
SUM-FCN [1] ECCV’18 ✘ 56.8 59.2 58.2 47.5 51.1 44.1
DR-DSN [31] AAAI’18 ✘ 58.1 59.8 58.9 42.1 43.9 42.6
A-AVS [32] TCSVT’20 ✘ 59.4 60.8 – 43.9 44.6 –
M-AVS [32] TCSVT’20 ✘ 61.0 61.8 – 44.4 46.1 –
DSNetab [2] TIP’20 ✘ 62.1 63.9 59.4 50.2 50.7 46.5
DSNetaf [2] TIP’20 ✘ 61.9 62.2 58.0 51.2 53.3 47.6
mvsDGCN [33] PR’20 ✘ 65.0 – – – – –
DASP [34] IJON’20 ✘ 63.6 64.5 – 45.5 47.0 –
MSVA [35] ICME’21 ✘ 61.5 – – 53.4 – –
RSGN [36] TPAMI’21 ✘ 60.1 61.1 60.0 45.0 45.7 44.0
3DSTsup [37] TIP’22 ✘ 58.3 58.9 56.1 47.4 49.9 47.9
RR-STG [38] TIP’22 ✘ 63.0 63.6 59.7 53.4 54.8 45.4
SSPVS [39] CoRR’22 ✘ 60.3 61.8 57.8 48.7 50.4 45.8
SA-CFT [40] TIP’23 ✘ 62.7 60.3 58.0 56.0 54.8 44.0
VSS-Net [41] TCSVT’24 ✘ 61.0 61.4 58.5 51.5 52.8 48.4
AMFM [42] ESWA’24 ✘ 61.0 60.8 58.6 51.8 52.8 46.4
PRLVS [43] IS’24 ✘ 63.0 59.2 57.0 46.3 49.7 47.6

vsLSTM [4] ECCV’16 ✔ – – 56.9 – – 40.7
dppLSTM [4] ECCV’16 ✔ – – 58.7 – – 41.8

Ours – ✔ 65.8 65.9 60.1 57.4 57.8 48.3

Table 3: Performance comparison in terms of F-score against state-of-the-art video sum-
marization methods on the FPVSum datasets. “Adapt.” indicates whether the method
adapts the source model to the target domain using target unlabeled data.

Method Venue Adapt. F-score

Random [9] ECCV’18 ✘ 16.3
Uniform [9] ECCV’18 ✘ 15.1
C3D [44] ICCV’15 ✘ 26.9
TDCNN [45] CVPR’16 ✘ 28.6
DSNetab [2] TIP’20 ✘ 42.1
DSNetaf [2] TIP’20 ✘ 44.6
SSPVS [39] CoRR’22 ✘ 47.4

DSN [10] NIPS’16 ✔ 22.7
FPVS [9] ECCV’18 ✔ 35.3

Ours – ✔ 50.3
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Table 4: Performance comparison (Kendall similarity and Spearman similarity) with state-
of-the-art video summarization methods on the TVSum dataset under the canonical set-
ting.

Method Venue Kendall’s τ Spearman’s ρ

Random – 0.000 0.000
Human – 0.177 0.204

vsLSTM [4] ECCV’16 0.042 0.055
GLRPE [46] ECCV’20 0.070 0.091
RSGN [36] TPAMI’21 0.083 0.090
SumGraph [47] ECCV’20 0.094 0.138
PGL-SUM [48] ISM’21 0.157 0.206
Clip-it [49] NIPS’21 0.108 0.147
MSVA [35] ICME’21 0.190 0.210
SSPVS [39] CoRR’22 0.177 0.233
SSPVS + text [39] CoRR’22 0.181 0.238
MFST [50] arXiv’22 0.222 0.224
AAAM [51] CVPR’23 0.193 0.254
MAAM [51] CVPR’23 0.207 0.271
CSTA [52] CVPR’24 0.194 0.255

Ours – 0.212 0.276

Table 5: Performance comparison (Kendall similarity and Spearman similarity) with state-
of-the-art video summarization methods on the SumMe dataset under the canonical set-
ting.

Method Venue Kendall’s τ Spearman’s ρ

Random – 0.000 0.000
Human – 0.177 0.204

RSGN [36] TPAMI’21 0.083 0.085
SSPVS [39] CoRR’22 0.178 0.240
SSPVS + text [39] CoRR’22 0.192 0.257
MSVA [35] ICME’21 0.200 0.230
MFST [50] arXiv’22 0.229 0.229
AAAM [51] CVPR’23 0.223 0.273
MAAM [51] CVPR’23 0.227 0.278
CSTA [52] CVPR’24 0.246 0.274

Ours – 0.256 0.286
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methods in all settings, which further verifies the effectiveness of our domain
adaptation framework.

Table 4 and Table 5 further compare our method under the rank-based
evaluation with other state-of-the-art methods on the TVSum and SumMe
datasets respectively. The random performance is obtained by generating
100 uniformly distributed random value sequences in [0,1] for each original
video and averaging the obtained correlation coefficients. The human per-
formance is generated using the leave-one-out approach, that is, for multiple
human annotations, one is selected as the prediction each time, the rest are
used as labels, and the results are finally averaged. Our method generally
outperforms other methods on both datasets and achieves the best results
on the SumMe dataset. The excellent performance under two evaluation sys-
tems (F-score and rank-based evaluation) validates the effectiveness of our
method.

Table 6: Comparison of different methods when training on the large-scale dataset
Mr.HiSum and testing on TVSum and SumMe datasets, together with the test split of
Mr.HiSum. * denotes our reproduced results.

Method Source
Mr.HiSum TVSum SumMe

F-score τ ρ F-score τ ρ F-score τ ρ

SimpleMLP Mr.HiSum 54.8 0.470 0.470 46.0 0.032 0.047 40.7 0.089 0.099
VASNet* [30] Mr.HiSum 55.2 0.474 0.474 46.6 0.114 0.166 42.4 0.109 0.120
PGL SUM* [48] Mr.HiSum 55.3 0.476 0.476 47.2 0.129 0.190 42.5 0.087 0.097
SSPVS* [39] Mr.HiSum 54.6 0.467 0.467 46.4 0.065 0.093 42.4 0.083 0.092
CSTA* [52] Mr.HiSum 55.3 0.475 0.475 46.0 0.094 0.139 41.0 0.075 0.083

Ours Mr.HiSum 55.5 0.478 0.478 48.2 0.139 0.203 44.5 0.101 0.112

To further evaluate the generalization ability of our method, we con-
duct domain generalization experiments using the large-scale Mr.HiSum [14]
dataset. Specifically, we train our model on the Mr.HiSum training set and
evaluate it on the test set of Mr.HiSum, the TVSum dataset, and the SumMe
dataset. As shown in Table 6, we compare our method with the baseline (Sim-
pleMLP), VASNet [30], and PGL SUM [48], as well as two state-of-the-art
methods (SSPVS [39] and CSTA [52]). Unlike the original Mr.HiSum paper,
which adopts metrics (e.g., MAP@15, MAP@50) for highlight detection, we
follow recent works and report F-score, Kendall’s τ , and Spearman’s ρ, which
better reflect the ranking consistency of predicted and ground truth frame-
level importance. Our method achieves the best performance in terms of
F-score on all three datasets, showing its effectiveness in selecting represen-
tative keyframes across domains. On TVSum and Mr.HiSum, it also achieves
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the highest values across all three metrics, indicating strong robustness and
ranking quality.

4.4.2. Ablation Study

To perform an in-depth analysis of each individual component of our
method, we conduct extensive ablation studies on TVSum, SumMe and
FPVSum datasets. We replace our generalized Transformer with the stan-
dard Transformer (“w/o TF”) to evaluate its impact on the complete model.
We remove the discrepancy reduction loss (“w/o DRL”) and the confidence
weighting strategy (“w/o CWS”), respectively, to evaluate their individual
effect on the domain adaptation. Table 7 shows the ablation study results.
It is interesting to observe that the proposed generalized Transformer has
better overall performance than the standard Transformer. Moreover, it is
obvious that both the discrepancy loss and the confidence weighting strat-
egy are beneficial for improving the performance under all settings on all
datasets.

Table 7: Ablation study results (F-score) on the TVSum, SumMe and FPVSum datasets.

Method
TVSum SumMe

FVPSum
Can Aug Tran Can Aug Tran

w/o TF 63.2 64.9 58.7 48.4 55.3 45.5 47.2
w/o DRL 65.3 65.0 59.6 52.7 55.1 45.2 46.5
w/o CWS 65.7 65.7 59.9 56.7 56.5 47.4 49.4

Ours 65.8 65.9 60.1 57.4 57.8 48.3 50.3

Table 8: Comparison results (Maximum Mean Discrepancy) between standard Trans-
former and our generalized Transformer on the TVSum, SumMe and FPVSum datasets
at the vendor stage.

Method
TVSum SumMe

FVPSum
Can Aug Tran Can Aug Tran

Standard 0.12 0.09 0.08 0.28 0.33 0.28 0.41

Generalized 0.08 0.08 0.07 0.22 0.29 0.18 0.39

In order to further analyze the effectiveness of our method, we conducted
experiments at two different stages. As shown in Table 8, we use Maxi-
mum Mean Discrepancy between the source and target domains to evalu-
ate the generalization ability of the model and compare the performance of
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the standard Transformer and our generalized Transformer at the vendor
stage. Maximum Mean Discrepancy (MMD) is a widely used metric in do-
main adaptation [53] and domain generalization [54], which quantitatively
measures the discrepancy between two distributions. Specifically, MMD cal-
culates the difference between the empirical means of the source and target
feature distributions in a reproducing kernel Hilbert space (RKHS). It is in-
teresting to note that our generalized Transformer has a smaller Maximum
Mean Discrepancy, which represents a greater generalization ability than the
standard Transformer.

At the client stage, as shown in Table 9, we add our discrepancy reduction
loss and confidence weighting strategy to two existing methods (VASNet [30],
DR-DSN [31], DSNet [2] and PGL-SUM [48]), and compare them with their
original versions. We can observe that the methods achieve better results
than their original versions, indicating that the strategy at the client stage
can work independently without the generalized Transformer model, which
has strong practicality.

Table 9: Comparison results (F-score) between the original methods and those that addi-
tionally applied our domain adaptation strategy on the TVSum and SumMe datasets at
the client stage.

Method
TVSum SumMe

Can Aug Tran Can Aug Tran

VASNet [30] 61.4 62.4 – 49.7 51.1 –
VASNet + Ours 61.9 63.1 – 51.4 52.0 –

DR-DSN [31] 58.1 59.8 58.9 42.1 43.9 42.6
DR-DSN + Ours 59.4 60.8 59.4 43.5 45.1 43.6

DSNetaf [2] 61.9 62.2 58.0 51.2 53.3 47.6
DSNetaf + Ours 62.3 63.0 59.0 51.9 54.2 48.2

PGL-SUM [48] 61.0 – – 55.6 – –
PGL-SUM + Ours 61.5 – – 57.3 – –

4.5. Qualitative Evaluation
4.5.1. Qualitative Comparison Results

Figure 3 provides example summaries of several videos generated by dif-
ferent methods (the ground-truth, our method, “Generalized”, CSTA [52]
and SSPVS [39]), including the 2-nd, 14-th and 43-rd videos from the TV-
Sum dataset under the transfer setting, where “Generalized” represents di-
rectly applying the generalized Transformer to the target domain without
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adaptation. We observe that the summaries generated by our method have
a high overlap with the ground-truth summaries, and our method outper-
forms the generalized Transformer and other methods, which demonstrates
the effectiveness of our method in reducing domain shift.

Figure 3: Qualitative results of different video summarization methods. The colored line
segments denote the selected video segments for the corresponding method, and the frames
below are sampled from the ground-truth summaries.

4.5.2. Visualization Results

To intuitively explain the effect of our method, we compare the visualiza-
tion of frame feature distribution between our method and other methods,
including standard Transformer, SSPVS [39], CSTA [52], and the variant of
our method (generalized Transformer). Specifically, we plot the T-SNE visu-
alization of features of source and target domains under the transfer setting
on the TVSum dataset, where the feature distribution of the target domain is
different from the source domain. It is worth noting that our goal is to assess
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(a) Standard (b) SSPVS (c) CSTA (d) Generalized (e) Ours

Figure 4: T-SNE visualizations of frame feature distributions generated by the standard
Transformer, SSPVS [39], CSTA [52], the generalized Transformer, and our method, in
which different colors are used to distinguish the frame features belonging to different
domains.

how well features from different domains are aligned, rather than focusing
solely on the compactness of clusters within a single domain. As shown in
Figure 4, the generalized Transformer learns more consistent features be-
tween the source and target domains, and our method further improves the
extraction of domain-invariant representations, outperforming the standard
Transformer, SSPVS, CSTA, and the generalized Transformer.

Figure 5 presents the change in both discrepancy reduction loss (red) and
MSE loss (blue) during the client stage. The discrepancy reduction loss is
used to adapt the source model to the target domain using unlabeled tar-
get data. The MSE loss, computed between the predicted and ground-truth
importance scores, serves as a performance metric on the target domain. Fig-
ure 5 (a) and (b) correspond to the transfer settings on SumMe and TVSum,
respectively. Notably, in both plots, the MSE loss decreases in sync with
the discrepancy reduction loss, indicating that minimizing the discrepancy
reduction loss effectively helps align the target feature distribution with the
source feature distribution, leading to more accurate predictions. Moreover,
compared to Figure 5 (b), the MSE loss curve in Figure 5 (a) exhibits minor
fluctuations, likely due to the smaller number of annotated training samples
in the SumMe dataset.

4.6. Complexity Analysis

We further compare the time complexity and memory usage of our method
with the state-of-the-art Transformer-based methods and non-Transformer-
based methods. We measure several metrics, including training latency, total
training time, training memory, inference latency and inference memory. As
shown in Table 10, compared to methods that do not use an attention mech-
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Figure 5: Loss change curves on the transfer setting of SumMe and TVSum, where the
MSE loss for evaluation is shown in blue and the discrepancy reduction loss (DRL) is
shown in red.

anism, such as DR-DSN, which relies on LSTM [19], our method achieves
better inference efficiency and shorter training cost. In addition, although we
adopt a two-stage training strategy, the total training time is still shorter than
DSNetab, DSNetaf and CSTA. These results demonstrate that the proposed
method maintains a favorable trade-off between accuracy and computational
cost.

Table 10: Model complexity comparison between our method and other methods.

Method Params
Training Inference

Latency Memory Total Time Latency Memory
(ms/video) (GB) (s) (ms/video) (GB)

DR-DSN [31] 2.6 M 36.4 0.66 248.9 41.7 0.40
DSNetab [2] 4.3 M 13.1 1.04 447.0 1.8 0.56
DSNetaf [2] 4.3 M 13.7 0.88 468.5 1.3 0.55
CSTA [52] 8.4 M 636.2 2.59 7252.7 19.3 0.93
SSPVS [39] 37.8 M 71.1 1.92 81.1 4.1 0.99

Ours (Vendor) 7.5 M 7.9 1.31 90.1 – –
Ours (Client) 7.5 M 15.2 1.88 173.3 – –
Ours 7.5 M 23.1 1.88 263.4 2.8 0.61

5. Limitation and Future Work

Despite the promising performance of our method, it is built upon the
assumption that the similarity distribution of visual features between video
frames aligns with the similarity distribution of their corresponding impor-
tance scores. That is, if two frames are visually similar in feature space, their
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importance values are likely to be similar. While this assumption holds true
in many cases, it may not always be valid, especially when other modalities
such as audio or text contribute significantly to the importance of frames.

In future work, we are going to explore multi-modal domain adaptation
techniques that incorporate audio and textual cues to achieve better sum-
marization. We believe that integrating such complementary information
can enhance the robustness and generalization ability of our summarization
framework, especially in scenarios where visual features alone are not suffi-
cient to capture the saliency of the content.

6. Conclusion

In this work, we address the challenge of cross-domain video summa-
rization, a task that suffers from the domain shift between the source and
target video domains. This domain shift often leads to poor performance
when applying a model trained on one domain to videos from a different
domain. To alleviate this problem, we propose a novel domain adaptation
framework consisting of two stages. At the vendor stage, we introduce a
generalized Transformer model, in which a regularization strategy is applied
to the attention mechanism to enhance the model’s generalization ability
across diverse video domains. To further improve domain adaptation, at the
client stage, we design a discrepancy reduction loss and a confidence weight-
ing strategy, which together ensure that the model adapts well to the target
domain while maintaining robust and transferable representations. Experi-
mental results demonstrate that our method outperforms existing methods
in both generalization and adaptation across multiple domains.
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