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Abstract
Open-vocabulary video visual relationship detec-
tion aims to detect objects and their relation-
ships in videos without being restricted by pre-
defined object or relationship categories. Exist-
ing methods leverage the rich semantic knowl-
edge of pre-trained vision-language models such
as CLIP to identify novel categories. They typi-
cally adopt a cascaded pipeline to first detect ob-
jects and then classify relationships based on the
detected objects, which may lead to error propaga-
tion and thus suboptimal performance. In this pa-
per, we propose Mutual EnhancemenT of Objects
and Relationships (METOR), a query-based uni-
fied framework to jointly model and mutually en-
hance object detection and relationship classifi-
cation in open-vocabulary scenarios. Under this
framework, we first design a CLIP-based contex-
tual refinement encoding module that extracts vi-
sual contexts of objects and relationships to refine
the encoding of text features and object queries,
thus improving the generalization of encoding to
novel categories. Then we propose an iterative en-
hancement module to alternatively enhance the rep-
resentations of objects and relationships by fully
exploiting their interdependence to improve recog-
nition performance. Extensive experiments on
two public datasets, VidVRD and VidOR, demon-
strate that our framework achieves state-of-the-
art performance. Codes are at https://github.com/
wangyongqi558/METOR.

1 Introduction
Open-vocabulary video visual relationship detection (Open-
VidVRD) [Gao et al., 2023] focuses on detecting relation-
ships between objects in videos, typically represented as
triplets of the form ⟨subject, relationship, object⟩, follow-
ing an open-vocabulary setting. In this setting, both object
and relationship categories are divided into a base set and a
novel set. The model is trained on the base set and is expected
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Figure 1: (a) Existing methods adopt a cascaded pipeline. (b) Our
method jointly models objects and relationships for their mutually
enhancement. (c) Statistics of triplet errors on the VidVRD test set,
categorized into object errors (OE) and relationship errors (RE). We
also highlight the relationship errors caused by error propagation in
the cascaded methods (OV-MMP and EOV-MMP), where the rela-
tionship is correctly classified using ground-truth object trajectories
but misclassified using detected object trajectories.

to generalize to the novel set during testing, enabling relation-
ship detection in a wider range of open-vocabulary scenarios.

Recent advances in pre-trained vision-language mod-
els [Radford et al., 2021; Li et al., 2022; Li et al., 2023]
have demonstrated significant potential in enhancing open-
vocabulary tasks [Liu et al., 2024; Wu et al., 2024b; Fan et
al., 2024]. By leveraging vast amounts of vision-language
pairs during training, these models effectively encode rich
semantic knowledge encompassing entities, actions, scenes,
and relationships [Fang et al., 2024; Wang et al., 2021;
Liang et al., 2023; Gao et al., 2023]. In the Open-VidVRD
task, these pre-trained models have been used to recog-
nize novel object and relationship categories, thereby im-
proving the generalization capability beyond predefined cat-
egories. Existing Open-VidVRD methods [Gao et al., 2023;
Yang et al., 2024; Wu et al., 2024a; Wang et al., 2025] typ-
ically adopt a cascaded pipeline, first detecting objects and
then classifying relationships based on the detected objects,
as illustrated in Fig. 1 (a). This design often leads to error
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propagation, as the inaccuracy of object detection adversely
affects the relationship classification, resulting in suboptimal
performance. Fig.1 (c) shows the number and causes of triplet
errors for different methods on the VidVRD dataset. It is ev-
ident that the cascaded methods exhibit a significant increase
in relationship errors due to error propagation, underscoring
the inherent weaknesses of these methods.

In this paper, we propose Mutual EnhancemenT of Objects
and Relationships (METOR), a query-based unified frame-
work for Open-VidVRD, which jointly models and mutually
enhances object detection and relationship classification, as
shown in Fig. 1 (b). It simplifies the Open-VidVRD pro-
cess by adopting a unified modeling strategy, thereby miti-
gating the error propagation inherent in cascaded pipelines,
and emphasizes the role of relationship context in enriching
object representations, effectively exploiting the interdepen-
dence between objects and relationships to promote their mu-
tual enhancement. As illustrated in Fig. 1 (c), our method
reduces both object errors and relationship errors, highlight-
ing the benefits of the proposed framework.

To enhance the generalization ability to novel categories,
we design a CLIP-based contextual refinement encoding
module that captures the contextual information of objects
and relationships to refine the encoding process. Specifi-
cally, we incorporate learnable object and relationship to-
kens into the CLIP visual encoder to capture their respective
contexts. These contexts are then used to refine the CLIP-
encoded text features and object queries, delivering instance-
specific semantic knowledge to improve the adaptability in
open-vocabulary scenarios.

To fully exploit the interdependence between objects and
relationships for recognition, we propose an iterative en-
hancement module to alternately enhance the representations
of objects and relationships. Specifically, this module con-
sists of multiple iterative enhancement layers, where each
layer first uses object features to extract relationship features
through spatio-temporal modeling and then uses the extracted
relationship features to refine the object features, promoting a
continuous mutual enhancement process that enables objects
and relationships to iteratively improve each other’s represen-
tations.

To summarize, the main contributions are as follows:

• We propose METOR, a query-based unified framework
that jointly models object detection and relationship
classification to effectively exploit their interdependence
to promote mutual enhancement, simplifying the pro-
cess of Open-VidVRD.

• We propose an iterative enhancement module that alter-
nately enhances the representations of objects and rela-
tionships by using each other’s representations for more
accurate recognition.

• We design a CLIP-based contextual refinement encoding
module that extracts contexts for objects and relation-
ships to refine the encoding of text features and object
queries for better open-vocabulary generalization.

2 Related Work
Video visual relationship detection (VidVRD) [Shang et
al., 2017] aims to detect relationships between objects over
time in a given video, which has been widely applied to var-
ious visual understanding tasks [Zhao et al., 2023; Nguyen
et al., 2024; Rodin et al., 2024]. Numerous studies have ex-
plored various VidVRD methods, which can be broadly cat-
egorized into spatio-temporal modeling [Qian et al., 2019;
Tsai et al., 2019; Liu et al., 2020; Cong et al., 2021], relation-
ship refinement [Shang et al., 2021; Chen et al., 2021], video
relationship debiasing [Xu et al., 2022; Dong et al., 2022;
Lin et al., 2024], and end-to-end video relationship detec-
tion [Zheng et al., 2022; Zhang et al., 2023; Jiang et al.,
2024]. However, these methods are designed for close-set
scenarios and struggle to generalize to open-vocabulary set-
tings, thus being limited in pratical applications.

Open-vocabulary VidVRD (Open-VidVRD) [Gao et al.,
2023] has emerged in recent years to extend VidVRD by
testing novel categories, thereby enhancing its applicabil-
ity to real-world scenarios. RePro [Gao et al., 2023], OV-
MMP [Yang et al., 2024] and UASAN [Wu et al., 2024a]
design prompt learning or semantic alignment modules to
better align visual and textual modalities. However, these
methods rely on a close-set pre-trained trajectory detector for
trajectory detection. Incorrect trajectories can lead to rela-
tionship classification errors, causing severe error propaga-
tion and hurting the overall performance.

The method most related to ours is EOV-MMP [Wang
et al., 2025], which extends OV-MMP into an end-to-end
model, eliminating the need for the close-set pre-trained tra-
jectory detector used in previous Open-VidVRD methods. It
jointly optimizes the object detection and relationship clas-
sification modules, introducing an auxiliary loss to capture
relationship context during object detection. However, EOV-
MMP only perceives the relationship context without explic-
itly leveraging it to enhance object representations. In ad-
dition, it still follows a cascaded pipeline that first detects
objects and then classifies relationships. In contrast, our
METOR jointly models objects and relationships, and fully
exploits their interdependence to promote mutual enhance-
ment.

3 Our Framework
3.1 Problem Definition
Video Visual Relationship Detection (VidVRD) involves
identifying visual relationship instances in a video sequence
V = {ft}Tt=1, where ft represents the frame at timestamp t,
and T denotes the total number of frames. Each visual re-
lationship instance is represented as a tuple (s, r, o, τs, τo),
where s, r, and o indicate the subject, relationship, and ob-
ject categories, respectively. τs and τo represent the trajecto-
ries of subject and object, respectively, defined as sequences
of bounding boxes {bst} and {bot} over a temporal span, re-
spectively, where t ranges from tstart to tend, indicating the
start and end times of each trajectory. In Open-VidVRD, cat-
egories are divided into base and novel splits, including base
object categories Cb

o, novel object categories Cn
o , base rela-

tionship categories Cb
r, and novel relationship categories Cn

r .



Contextual 
Refinement 
Encoding 
Module

Transformer 
Decoder

Iterative
Enhancement 

Module

ctx obj−

ctr obj−

ctx rel−

ctr rel−

Trajectory 
Regression Head

Q



̂

CLS

…
patch

…
o

o

…
r

r

̂ ˆ
s ˆ

o

traj

Figure 2: Overview of the proposed framework.

Training is only performed on base categories, while evalu-
ation includes both base and novel categories to evaluate the
model’s generalization.

3.2 Overview
In this paper, we propose METOR, a query-based unified
framework that jointly models object detection and relation-
ship classification to effectively exploit their interdependence
to promote mutual enhancement, streamlining the process of
Open-VidVRD. The framework comprises two key modules:
a contextual refinement encoding module (Sec. 3.3) and an
iterative enhancement module (Sec. 3.4). An overview of
METOR is illustrated in Fig. 2.

For a given video V , we input it into the contextual re-
finement encoding module along with Nq learnable object
queries Q. This module outputs CLS embeddings HCLS,
patch embeddings Hpatch, refined text features To for ob-
jects, refined text features Tr for relationships, refined ob-
ject queries Q̂, object context embeddings Co and relationship
context embeddings Cr, formulated by

(HCLS,Hpatch, To, Tr, Q̂, Co, Cr) = Φ(V,Q), (1)

where Φ(·) denotes the contextual refinement encoding mod-
ule.

Then, the refined object queries and patch embeddings are
then passed through a Transformer decoder to generate visual
object features:

O = Decoder(Q̂,Hpatch), (2)

where Decoder(·) is the Transformer decoder, and O denotes
the visual features of Nq objects in the video.

Next, the visual object features and the CLS embeddings
containing global semantic information are fed into the itera-
tive enhancement module to generate mutually enhanced vi-
sual subject feature Ôs, visual object feature Ôo, and visual
relationship feature R̂:

(Ôs, Ôo, R̂) = Ψ(O,HCLS), (3)

where Ψ(·) denotes the iterative enhancement module.
Finally, the mutually enhanced features are matched with

the corresponding textual features to predict subject score Ss,
object score So, and relationship score Sr:

Ss = σ(cos(Ôs, To)),
So = σ(cos(Ôo, To)),
Sr = σ(cos(R̂, Tr)),

(4)

where σ(·) is the sigmoid function, and cos(·, ·) represents the
cosine similarity. The trajectories for the subject and object
are predicted as

τs = Mb(Ôs),

τo = Mb(Ôo),
(5)

where Mb(·) denotes a trajectory regression head imple-
mented as a multi-layer perceptron.

3.3 Contextual Refinement Encoding Module
The main goal of Open-VidVRD is to discover novel cate-
gories. To improve the generalization ability to novel cate-
gories, we propose a contextual refinement encoding module
that extracts contexts for objects and relationships to refine
the encoding of text features and object queries. An illustra-
tion of this module is shown in Fig. 3.

The video V is first divided into fixed-sized and non-
overlapping patches, which are then linearly projected into
1D tokens:

hpatch = L(P (V)), (6)

where P (·) represents the patchification operation, and L(·)
is the linear projection layer. hpatch ∈ RT×Np×d represents
the patch tokens, where T is the number of video frames, and
Np is the number of patches per frame.

The patch tokens, concatenated with learnable CLS tokens
hCLS, learnable object context tokens co and learnable rela-
tionship context tokens cr, are fed into the CLIP ViT visual
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Figure 3: An overview of the proposed contextual refinement encoding module.

encoder to generate CLS embeddings HCLS, patch embed-
dings Hpatch, object context embeddings Co and relationship
context embeddings Cr:

(HCLS,Hpatch, Co, Cr) = V ([hCLS;hpatch; co; cr]), (7)

where V (·) represents the CLIP ViT visual encoder, and [·; ·]
denotes the concatenation operation.

To capture contextual dependencies to refine the object
queries in each frame, the object context embedding are used
as keys and values, and the object queries serve as queries in
a multi-head attention mechanism:

Q̂ = MHA(Q, Co, Co) +Q, (8)

where MHA(·, ·, ·) is the multi-head attention mechanism.
The residual connection preserves information in the origi-
nal object queries while incorporating contextual knowledge
from the object context embeddings.

To refine the textual object features, the object context em-
beddings are first processed through an object context map-
ping layer, then concatenated with a set of learnable vectors
vo and an object category embedding OBJ, and finally passed
through the CLIP text encoder:

To = G([vo;Mo(Co);OBJ]), (9)

where To denotes the refined textual object features, G(·) rep-
resents the CLIP text encoder, and Mo denotes the object
context mapping layer, implemented as a multi-layer percep-
tron.

In a similar way, the refined textual relationship features Tr
are learned from the relationship context embeddings Cr:

Tr = G([vr;Mr(Cr);REL]), (10)

where vr denotes a set of learnable vectors, Mr represents
the relationship context mapping layer, implemented as a
multi-layer perceptron, and REL corresponds to the relation-
ship category embedding.

After encoding, the refined object queries Q̂ and patch em-
beddings Hpatch are fed into a Transformer decoder to gener-
ate visual object features O ∈ RNq×T×d, which represent the
visual features corresponding to Nq candidate objects across
T video frames. From the visual object features O, we de-
rive subject-object pairs for subsequent recognition, denoted
as (Os,Oo), where Os and Oo represent the visual subject
and object features, respectively.

3.4 Iterative Enhancement Module
We propose an iterative enhancement module to alternatively
enhance the representations of objects and relationships by
fully exploiting their interdependence, which consists of Ni

iterative enhancement layers, as illustrated in Fig. 4. In each
layer, the visual features of the paired subject and object are
first concatenated with the CLS embeddings, and then is fed
into a spatio-temporal Transformer to generate visual rela-
tionship features. These visual relationship features are pro-
cessed through a relationship feature mapping layer, which
in turn enhances the visual subject and object features. This
process is expressed as

R̂(k) = STTrans(k)([Ô(k−1)
s ; Ô(k−1)

o ;HCLS]),

Ô(k)
s = αÔ(k−1)

s + (1− α)M
(k)
f (R̂(k)),

Ô(k)
o = αÔ(k−1)

o + (1− α)M
(k)
f (R̂(k)),

(11)

where STTrans(k)(·) and M
(k)
f (·) denote the spatio-

temporal Transformer and the relationship feature mapping
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layer of the k-th iterative enhancement layer, respectively.
R̂(k) represents the visual relationship features, while Ô(k)

s

and Ô(k)
o are the enhanced visual subject and object features

in the k-th layer. α is a balance parameter.
For a subject-object feature pair (Os,Oo), the iterative en-

hancement module initializes the inputs to the first layer as
Ô(0)

s = Os and Ô(0)
o = Oo, and outputs the the mutually

enhanced visual subject, object and relationship features as
Ôs = Ô(Ni)

s , Ôo = Ô(Ni)
o , and R̂ = R̂(Ni), respectively.

3.5 Training Objective
We train the entire framework in an end-to-end manner. The
overall objective function consists of five losses: a relation-
ship contrastive loss Lrel-ctr, an object contrastive loss Lobj-ctr,
a trajectory loss Ltraj, a relationship contextual loss Lrel-ctx,
and an object contextual loss Lobj-ctx, formulated by

L = Lrel-ctr+Lobj-ctr +θtrajLtraj+θctx(Lrel-ctx+Lobj-ctx), (12)

where θtraj and θctx are balance factors.
Contrastive Loss. The relationship contrastive loss is formu-
lated using the binary cross-entropy loss (BCE):

Lrel-ctr =
1

|Cb
r|
BCE(Sr, r̃), (13)

where Sr represents the predicted relationship score, r̃ is the
ground-truth relationship labels for the subject-object pair,
and Cb

r denotes the set of base relationship categories used
during training.

The object contrastive loss is computed using the cross-
entropy loss (CE):

Lobj-ctr = CE(Ss, s̃) + CE(So, õ), (14)

where Ss and So are the predicted scores for the subject and
object, respectively, and s̃ and õ are the ground-truth labels
for the subject and object categories.

Trajectory Loss. The trajectory loss consists of a bounding
box regression loss and a trajectory consistency loss, given by

Ltraj = Lbox + θcstLcst,

Lbox =
1

|T |
∑T

t=1

∑
e∈{s,o}

SL1(B(t)
e , B̃(t)

e ),

Lcst =
1

|T − 1|
∑T−1

t=1

∑
e∈{s,o}

∥B(t+1)
e − B(t)

e ∥1,

(15)

where B(t)
e and B̃(t)

e denote the predicted and ground truth
bounding boxes for entity e ∈ {s, o} at frame t, derived from
the predicted trajectory τe and ground truth trajectory τ̃e.
SL1(·) represents the Smooth L1 loss for bounding box re-
gression. ∥·∥1 is the L1 norm enforcing temporal smoothness
by penalizing large deviations between consecutive bounding
boxes. θcst balances the contributions of the bounding box
regression loss and the trajectory consistency loss.
Contextual Loss. To capture more effective contextual infor-
mation for relationships and objects, we define the contextual
losses for them using the binary cross-entropy loss (BCE):

Lrel-ctx = BCE(cos(Cr, Tr), R̃),

Lobj-ctx = BCE(cos(Co, To), Õ),
(16)

where R̃ and Õ represent the sets of relationship and object
categories present in each frame, respectively.

4 Experiment
4.1 Dataset and Evaluation
Datasets. We evaluate our framework on the VidVRD [Shang
et al., 2017] and VidOR [Shang et al., 2019] datasets. Vid-
VRD consists of 1,000 videos, with 800 videos for training
and 200 for testing, covering 35 object categories and 132
relationship categories. VidOR contains 10,000 videos, in-
cluding 7,000 for training, 835 for validation, and 2,165 for
testing, covering 80 object categories and 50 relationship cat-
egories.
Evaluation Settings. Following Repro [Gao et al., 2023], we
designate common object and relationship categories as base
categories and rarer ones as novel categories. Training is per-
formed on the base categories, and testing is conducted un-
der two settings: (1) Novel-split evaluation, which includes
all object categories and novel relationship categories; (2)
All-split evaluation, covering all object and relationship cat-
egories as the standard evaluation. Testing is carried out on
both the VidVRD test set and the VidOR validation set, as the
annotations for the VidOR test set are not available.
Evaluation Tasks. Three evaluation tasks are usually used
for VidVRD: scene graph detection (SGDet), scene graph
classification (SGCls), and predicate classification (PredCls).
SGCls and PredCls are often used to evaluate methods that
depend on pre-detected trajectories and are not suitable for
our framework which jointly models objects and relation-
ships. So we use SGDet that do not rely on pre-detected tra-
jectories for evaluation.
Evaluation Metrics. We use mean Average Precision (mAP)
and Recall@K (R@K) with K = 50, 100 as evaluation metrics
for relationship classification. Following EOV-MMP [Wang



Split Method VidVRD VidOR
mAP R@50 R@100 mAPo mAP R@50 R@100 mAPo

Novel

RePro [Gao et al., 2023] 5.87 12.75 16.23 10.36 - - - -
UASAN [Liu et al., 2024] 9.88 12.80 17.68 12.15 - - - -

OV-MMP [Yang et al., 2024] 12.15 13.72 15.21 14.37 0.84 1.44 1.44 1.11
EOV-MMP [Wang et al., 2025] 15.04 16.03 18.18 36.31 2.45 4.79 4.79 2.33

METOR (Ours) 16.74 16.72 19.43 38.91 3.75 4.86 5.32 3.37

All

RePro [Gao et al., 2023] 21.12 12.63 15.42 18.18 - - - -
UASAN [Liu et al., 2024] 22.93 15.74 18.89 23.74 - - - -

OV-MMP [Yang et al., 2024] 22.10 13.26 16.08 34.61 7.15 6.54 8.29 3.38
EOV-MMP [Wang et al., 2025] 26.34 16.48 19.54 52.72 11.08 8.43 9.82 12.99

METOR (Ours) 27.52 16.69 19.58 55.09 12.32 8.54 9.72 14.02

Table 1: Comparison with existing methods on VidVRD and VidOR datasets.

et al., 2025], we also use mean Average Precision of object
trajectory (mAPo) to evaluate the quality of object detection.

4.2 Implementation Details
In all experiments, key frames are sampled every 30 video
frames to form 30-frame video segments. Following [Shang
et al., 2017; Gao et al., 2023; Liu et al., 2024], visual
relationship triplets are generated for video segments and
merged using the greedy relation association algorithm pro-
posed in [Shang et al., 2017]. We adopt the ViT-L/14 variant
of CLIP with fixed parameters. The number of iterative en-
hancement layers Ni is set to two for VidVRD and three for
VidOR. The hyperparameter α in Eq. 11 is set to 0.9. The
loss balance factors θtraj, θctx, and θcst in Eq. 12 and Eq. 15
are set to 1.0, 0.2, and 0.1, respectively. The number of
object queries Nq is set to 100. The Transformer decoder
is initialized with the parameters of an object detector pre-
trained on the MS-COCO dataset [Lin et al., 2014], exclud-
ing novel object categories. For object detection results, we
retain object trajectories with an average classification score
greater than 0.2 and filter bounding boxes using a threshold
of 0.35. The optimization process employs the AdamW algo-
rithm [Loshchilov and Hutter, 2019] with an initial learning
rate of 1e-4. A multi-step decay schedule is applied at epochs
15, 20, and 25, reducing the learning rate by a factor of 0.1 at
each step, and the model is trained for a total of 30 epochs.
The batch size is set to 1, which means that only one video
is processed at a time. All experiments are conducted using a
single NVIDIA GeForce RTX 4090 GPU.

4.3 Comparison Results
We compare our method with existing Open-VidVRD meth-
ods, including RePro [Gao et al., 2023], UASAN [Wu et al.,
2024a], OV-MMP [Yang et al., 2024] and EOV-MMP [Wang
et al., 2025]. Notably, RePro, UASAN, and OV-MMP rely on
trajectory detectors pre-trained on a close set. For a fair com-
parison, we exclude data from novel categories and retrain
the trajectory detector to reproduce these methods. Due to
the lack of publicly available models or codes of RePro and
UASAN on the SGDet task on the VidOR dataset, we does
not show their results on the VidOR dataset.

Tab. 1 reports the evaluation results of our method and ex-
isting Open-VidVRD methods on the SGDet task on the Vid-

Enc Itr Novel All
mAP mAPo mAP mAPo

11.64 29.38 24.33 48.27
✓ 15.16 35.11 25.67 50.30

✓ 13.49 29.38 25.97 52.17
✓ ✓ 16.43 38.56 27.45 55.09

Table 2: Performance of ablation study for the two modules in
METOR on the VidVRD dataset. “Enc” and “Itr” denote the con-
textual refinement encoding module and the iterative enhancement
module, respectively.

VRD and VidOR datasets under both novel-split and all-split
settings. From Tab. 1, we can draw the following observa-
tions: (1) METOR achieves improvements over contempo-
rary models on almost all metrics on both datasets, especially
substancial gains in mAP and mAPo. This indicates that our
method helps a lot improving the performance of object de-
tection and relationship classification by mutually enhancing
the representations of objects and relationships. (2) Com-
pared with the all-split, METOR achieves more significant
improvements on the novel-split. For instance, in terms of
mAP metric on VidOR, our method surpasses the best com-
peting approach by an absolute margin of 1.30% (3.75% vs.
2.45%) and a relative margin of 53.06% on the novel-split,
while achieving an absolute margin of 1.24% (12.32% vs.
11.08%) and a relative margin of 11.19% on the all-split. This
demonstrates that by leveraging the rich semantic knowledge
in CLIP to capture object and relationship contexts to enhance
feature representations, our method improves the generaliza-
tion ability to novel categories.

We also compare METOR with state-of-the-art visual lan-
guage pre-trained models such as Video-LLMs, and the ex-
perimental results provided in Supplementary Materials.

4.4 Ablation Studies
We conduct comprehensive ablation studies on the VidVRD
dataset to assess the contribution of each component.
Effectiveness of Different Modules. To evaluate the effec-
tiveness of the contextual refinement encoding module (de-
noted as “Enc”), we remove it and use the original CLIP en-
coder as its replacement for comparison. To evaluate the it-



Variant Novel All
mAP mAPo mAP mAPo

w/o CRE 13.49 29.38 25.97 52.17
w/o CRQ 15.32 35.19 26.25 53.30
w/o CRT 14.91 33.26 26.73 54.08
METOR 16.43 38.56 27.45 55.09

Table 3: Performance of ablation study for the contextual refinement
encoding on the VidVRD dataset.

Iteration Novel All
Number mAP mAPo mAP mAPo

0 15.16 35.11 25.67 50.30
1 16.04 37.82 26.88 53.76
2 16.43 38.56 27.45 55.09
3 16.25 38.28 27.39 55.16

Table 4: Performance of model with different iteration numbers on
the VidVRD dataset.

erative enhancement module (denoted as “Itr”), we remove
it and design a non-mutual enhancement module as replace-
ment. Tab. 2 shows the evaluation results where the consis-
tent improvements in all metrics highlight the effectiveness of
the proposed modules in our method. Specifically, incorpo-
rating the contextual refinement module boosts performance,
particularly for novel categories, suggesting that contextual
refinement improves generalization to real-world scenarios.
Additionally, adding the iterative enhancement module im-
proves both object and relationship detection, validating the
benefits of mutual enhancement.
Effectiveness of Contextual Embeddings. To evaluate the
effectiveness of the contextual embeddings in the contextual
refinement encoding module, we design several variants of
METOR for comparison: (1) “w/o CRE”, removing contex-
tual refinement encoding; (2) “w/o CRQ”, removing contex-
tual refinement of object queries; (3) “w/o CRT”, removing
contextual refinement of text features. As shown in Tab. 3,
the results demonstrate that METOR outperforms all variants.
Removing contextual refinement (whether applied to object
queries, text features, or both) leads to significant drops in
performance, especially in the novel categories. These com-
parisons underscore the critical contribution of contextual re-
finement encoding to relationship detection.
Evaluation of the Number of Iteration. To evaluate the im-
pact of the number of iterations in the iterative enhancement
module, we start with a baseline model without the mutual
enhancement, that is, the iteration number is set to zero. We
then gradually increase the number of iterations by adding
more iterative enhancement layers and analyze their impact
on the performance. As shown in Tab. 4, the results demon-
strate that as the number of iterations increases, the perfor-
mance improves significantly, peak at two layers, and then
decreases slightly.

4.5 Qualitative Analysis
To further evaluate the impact of the iterative mutual enhance-
ment module on feature representation, we visualize the fea-
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Figure 5: Qualitative results of feature distributions via T-SNE. (a)
and (b) display the feature distribution of objects before and after
mutual enhancement, while (c) and (d) show the feature distribution
of relationships. The categories labeled in red font represent the
novel categories.

ture distributions of object and relationship categories before
and after mutual enhancement. Specifically, we project the
features onto a 2D plane using T-SNE [Hinton and Roweis,
2002]. As illustrated in Fig. 5, the features after mutual en-
hancement exhibit better clustering. Features within the same
category become more compact, while those between differ-
ent categories are more clearly separated. This indicates that
the mutual refinement process effectively enhances the fea-
ture discrimination of objects and relationships. More quali-
tative analysis are provided in the Supplementary Materials.

5 Conclusion
In this paper, we propose METOR, a query-based unified
framework that jointly models object detection and relation-
ship classification. It is simple yet effective and can mutually
enhance object detection and relationship classification by ef-
fectively exploiting their interdependence. Under this frame-
work, we design an iterative enhancement module that alter-
nately enhances the representations of objects and relation-
ships by using each other’s representation. Additionally, we
design a contextual refinement encoding module that extracts
contexts for objects and relationships to refine the encoding
of text features and object queries. Extensive experimental
results on the VidVRD and VidOR datasets demonstrate that
our method achieves state-of-the-art performance. In the fu-
ture, we will explore leveraging additional modalities such
as audio and 3D information to support Open-VidVRD in a
wider range of applications to enhance scene understanding
in dynamic environments.
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