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Abstract

Driven by large-scale contrastive vision-language pre-
trained models such as CLIP, recent advancements in the
image-text matching task have achieved remarkable suc-
cess in representation learning. Due to image-level visual-
language alignment, CLIP falls short in understanding fine-
grained details such as object attributes and spatial rela-
tionships between objects. Recent efforts have attempted to
compel CLIP to acquire structured visual representations by
introducing prompt learning to achieve object-level align-
ment. While achieving promising results, they still lack the
capability to perceive actions, which are crucial for describ-
ing the states or relationships between objects. Therefore,
we propose to endow CLIP with fine-grained action-level
understanding by introducing an LLM-enhanced action-
aware multi-modal prompt-tuning method, incorporating
the action-related external knowledge generated by large
language models (LLMs). Specifically, we design an ac-
tion triplet prompt and an action state prompt to exploit
compositional semantic knowledge and state-related causal
knowledge implicitly stored in LLMs. Subsequently, we
propose an adaptive interaction module to aggregate atten-
tive visual features conditioned on action-aware prompted
knowledge for establishing discriminative and action-aware
visual representations, which further improves the perfor-
mance. Comprehensive experimental results on two bench-
mark datasets demonstrate the effectiveness of our method.
Codes are at https://github.com/Mengxiao-
Tian/LAMP.

1. Introduction
Image-text matching has gained much attention in recent
years, aiming to match images with the most relevant texts
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Top-1  sentence (0.291) : 

Query image

GT  sentence (0.286): 

Man running wearing a 
blue shirt with a number 
taped to it.

A child wearing a blue 
shirt is jumping in the air.

(a) Image-to-Text Matching

Top-1 image: 0.345 GT image: 0.329

Query sentence:
A man in a red shirt si@ng in the grass as a ball flies past

(b) Text-to-Image Matching

Figure 1. Failure cases of image-text matching (image-to-text and
text-to-image) using CLIP on the COCO test set. Similarity scores
are shown in orange, and correct matches are marked in ✓⃝ and
mismatches in ✗⃝. (a) CLIP incorrectly retrieves the top-1 text for
a given image query; (b) CLIP incorrectly retrieves the top-1 image
for a given text query.

and vice versa. This is a fundamental task in vision and lan-
guage research, involving multimodal reasoning and align-
ment of visual and textual concepts at different levels, such
as cross-modal retrieval [10, 29], natural language visual
reasoning [2, 13], and visual question answering [12, 32].
Recently, large-scale pre-trained models such as CLIP [31]
have shown superior generalization and transferability on
various downstream tasks [11, 39, 52], making CLIP one
of the most widely used pre-trained models for image-text
matching.

However, a large number of studies have demonstrated
that discarding fine-grained visual information results in
subpar performance on downstream tasks involving local-
ization [51], counting [28], and understanding relationships
between objects or object attributes [14, 52]. Recent stud-
ies [16, 24, 38] focus on object-level understanding by in-
troducing learnable prompts that describe more details of
image regions, i.e., objects or object attributes, enabling
CLIP to learn fine-grained representations, thereby enhanc-
ing fine-grained understanding. Despite the impressive per-
formance, whether CLIP can effectively perceive actions
(i.e., states or relationships between objects) in the image-
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Figure 2. The statistical analysis of inconsistent actions between
the query and the candidate in image-text matching using CLIP on
the Flickr30K test set.

text matching task remains unresolved.
As shown in Figure 1, the CLIP score of the ground-truth

image-text pair is lower than that of a mismatched pair. We
further perform a statistical analysis of the action incon-
sistency between the query and the candidate, as shown in
Figure 2. These results indicate that CLIP exhibits inade-
quacies in accurately perceiving actions. Therefore, we ask:
How to endow CLIP with the fine-grained and action-aware
perception to improve its image-text matching capability?
This paper aims to approach this from both textual and vi-
sual perspectives.

From the textual perspective, we consider the compo-
sitionality and causality of actions. We assume that each
action has an initiator and a recipient, and there is a logi-
cal relationship between the two regarding the specific ac-
tion. Therefore, we propose to leverage the world knowledge
about actions in LLMs to decompose the original textual
descriptions into all possible action triplets in the format of
<subject, action, object>. Each triplet captures a pair of po-
tential entities with their action interrelations. For example,
as shown in Figure 1, the original description “A man wear-
ing a blue shirt is jumping in the air” is decomposed into
“<man, jumping, air>”. Furthermore, we believe that each
action has its state, called action state, which can be caused
or inferred by specific entities. Each action state provides
more details and comprehensive descriptions to supplement
the information contained in the action triplet. Thus, for
each action triplet, we feed the hand-crafted instructions
into LLMs to generate state descriptions about the action
in the form of language prompts. For example, the action
state “lifting both feet off the ground and propelling the body
upwards” corresponds to the action triplet “<man, jumping,
air>”.

From the visual perspective, we also need to consider how
to embed the action knowledge obtained from the textual
descriptions into model training, that is, how to use action
triplets and action states to guide the image-text training of
CLIP. To this end, we design action-aware prompts based on
different action information during training: action triplet
prompts and action state prompts, which will be fed into the

image encoder of CLIP to enable its visual representation to
better learn action information at different levels. The action
triplet prompts guide the image encoder to capture the rich
compositional semantics existing in the action relationships
between entities, while the action state prompts guide the
image encoder to pay more attention to the resulting states
of action in the visual content. Furthermore, to reduce the
disturbance of irrelevant or noisy action information in the
action-aware prompts, we propose an adaptive interaction
module, which adaptively attends to the salient action cues
relevant to the visual content, facilitating fine-grained align-
ment with the corresponding textual representations.

The main contributions are summarized as follows: (1)
To the best of our knowledge, we are the first to enhance
CLIP with fine-grained action-aware perception, and pro-
pose an LLM-enhanced action-aware multimodal prompt
tuning method that incorporates external action knowledge
from LLMs to improve the image-text matching perfor-
mance. (2) We design two complementary action-aware
prompts that use fine-grained action knowledge from com-
positionality and causality perspectives, and introduce an
action-aware adaptive interaction module to aggregate at-
tentive visual features based on action knowledge. (3) Ex-
tensive experiments on public datasets show that our method
achieves significant performance improvements over exist-
ing methods.

2. Related Work
Image-Text Matching. Image-text matching has attracted
much attention in recent years, and most existing methods
attempt to embed images and texts into a common space to
measure their semantic similarity. These methods can be
categorized into coarse-grained and fine-grained matching.
The coarse-grained matching methods [7, 22, 49] utilize
separate encoders to extract global features from images
and texts, and then project them into a common embedding
space. The fine-grained matching methods [10, 18, 19, 44]
focus on learning fine-grained alignments between image
regions and textual words. SCAN [18] proposes a stacked
cross-attention network to explore fine-grained correspon-
dences between image regions and words, inspiring a range
of various sophisticated methods [4, 29, 30]. Recently, many
works [6, 8, 40] focus on employing GCN-based networks to
learn local region-word alignment, achieving significant per-
formance improvements. Despite the significant progress
achieved by exploring diverse fine-grained interaction pat-
terns, these fine-grained methods still heavily rely on expert
experience to handcraft networks.

The most relevant method to our work is AME [19],
which enhances action-aware representations using the
action-similar texts from the memory bank. In contrast, we
exploit the powerful in-context learning capability of LLMs
to generate fine-grained action knowledge instead of relying



A man is wearing sunglasses and holding a 
baby with a white hat.

Original Textual Description

Ac
#o

n 
Kn

ow
le

dg
e

G
en

er
a#

on

Action Triplet
Encoder

Text
Encoder

Text
Encoder

Prompt   
Adapter

Prompt   
Adapter

Embedding Layer

…… …… ……

𝑬𝟎𝑷𝟎𝒔 𝑷𝟎𝒕

Action-aware Adaptive Interaction

𝑃$

⊕…… ……

Transformer Layer

…… …………

Cross-attention

Self-attention

Cross-aBen#on

Self-attention

𝑸 𝑸 𝑲 𝑽𝑲 𝑽

ABen#on
Merge

MLP

⨂

……

Visual encoder 
Layer

Transformer Layer

Transformer Layer

Trainable parameters
in first-stage training 

Frozen 
Parameters 

Matmul
Operation

⨂ ⊕ Concatenate
Operation

Trainable parameters 
in second-stage training 

Action State
prompts

Action Triplet
prompts

Image Patch
Embedding

Learnable visual
prompts 

AcBon-aware
Tokens

ℒ%&'()*

ℒ%&'()+

Loss

Action Triplets

<man, wear, sunglasses>

<man, holding, baby>

<baby, wear, hat>

Ac5on State Descrip5ons

……

Man rests sunglasses frames on his nose 
with the temples fixed behind ears. 

One hand supports the back and head, 
while the other hand supports the bottom.

……

Figure 3. Overview of the proposed method.

solely on fixed original textual descriptions, thus enabling
the model to achieve more fine-grained action-aware visual
understanding.
Prompt Learning for CLIP. Various methods for prompt
learning [17, 37, 38] have emerged as an effective and
parameter-efficient approach to enhance the adaptation of
CLIP to the downstream tasks, such as few/zero classifica-
tion [21, 50], object detection [20, 25], and video under-
standing [37, 39].

A method closely related to ours is actionCLIP [39],
which leverages CLIP’s joint visual-textual embedding
space for action recognition. However, it only uses action
names as text prompts with prefixes and suffixes that carry
limited semantic meanings. In contrast, we adopt a sys-
tematic approach that uses LLM as a knowledge engine to
generate knowledge-rich prompts tailored to actions. These
prompts incorporate fine-grained knowledge from composi-
tionality and causality perspectives to provide fine-grained
guidance for representation learning. In addition, we in-
troduce an additional module to maximize the capture of
action-related information.
External Knowledge from LLMs. Recently, the inte-
gration of task-relevant external knowledge from LLMs
into prompts has been explored to enhance the discrimi-
native ability of the prompt tuning process. KgCoOp [46]
constrains the learnable prompt embeddings with general
knowledge to improve generalization. Kan et al. [16] de-
veloped knowledge-aware prompts to assist the model in
identifying the correspondences between images and dif-
ferent categories. Wang et al. [43] proposed to generate
diverse forms of linguistic knowledge and conduct hierar-
chical prompt tuning for better performance. Menon et
al. [26] proposed to classify images by querying VLMs
with descriptive features extracted from LLMs for inter-
pretable and adaptable recognition. Su et al. [33] leveraged

LLMs to extract causal commonsense knowledge for reason-
ing about only the “why” questions in video understanding.
Furthermore, Tan et al. [35] proposed category-wise and
content-wise guidance for prompt optimization, helping the
model understand general category information while cap-
turing intraclass variation. Buettner et al. [1] distinguished
visual descriptions of the same object class across differ-
ent geographical regions by using LLMs. Niu et al. [27]
proposed a state-aware reasoning framework with LLM-
generated knowledge for dynamic procedure planning in in-
structional videos.

The above LLMs-based methods typically focus on gen-
eral descriptions of entities and attributes in the text space.
In contrast, we propose leveraging external action knowl-
edge from LLMs to concentrate on the action states and
relationships between objects. This knowledge can then
be integrated into the prompts learning to enhance CLIP’s
fine-grained visual perception of actions.

3. Our Method
3.1. Overview
In this paper, we propose an LLM-enhanced action-aware
multi-modal prompt-tuning method, which incorporates ex-
ternal action knowledge from LLMs to enhance action-aware
perception, with a two-stage training strategy. As illustrated
in Figure 3, starting with the original text description, the
action knowledge generation module extracts and generates
two kinds of knowledge: action triplets that outline the rela-
tionships between entities, and action state descriptions that
detail the states of entities related to the action. These forms
of knowledge serve as prompts to enhance the action-aware
perception abilities of CLIP. Furthermore, these prompts
are integrated into the proposed action-aware adaptive in-
teraction modules together with visual tokens to effectively



capture various levels of visual information related to the
action.

3.2. Generation of Action Knowledge
Figure 4 shows the generation of action knowledge by using
the powerful in-context learning capability of LLMs. Our
prompt template is generated using GPT-3.5, and minor ad-
justments do not affect the output. This knowledge includes
not only fine-grained action relationships but also precise
descriptions of their action states. Specifically, we design
a prompt to instruct GPT-3.5 to construct action triplets,
denoted as R𝑡 , and we further feed them with another in-
struction to generate knowledge-rich and fine-grained action
state descriptions 𝐷 about actions in the form of language,
serving as valuable informative supplements for R𝑡 . A sim-
ple format check is performed afterward to ensure the output
meets the desired specifications. It is important to note that
the prompts can vary depending on datasets to accommodate
different distributions of data.
Action Triplet Generation. We use one of the most power-
ful LLMs, GPT-3.5 to generate action triplet. Specifically,
we first prepare several in-context learning examples of pos-
sible inputs along with their expected output triplets for GPT-
3.5 to perform in-context learning. Each in-context sample
consists of a textual description and corresponding action
triplets. By combining multiple in-context samples, the
LLM is constrained to generate higher-quality outputs while
reducing irrelevant content. Subsequently, we use a well-
designed instruction template𝑄1 with in-context samples to
instruct GPT-3.5 to parse an input caption 𝑇 into decoupled
textual action triplets, denoted as R𝑡 , which include entities
and their interrelated action relationships, formulated as

R𝑡 = LLM( [𝑄1, 𝑇]). (1)

Here R𝑡 = {𝑟𝑖}𝑁𝑖=1, and 𝑟𝑖 is represented as

𝑟𝑖 =
{
(𝑒𝑖 , 𝑟 (𝑒𝑖 , 𝑒 𝑗 ), 𝑒 𝑗 ) | 1 ≤ 𝑖, 𝑗 ≤ 𝑁

}
, (2)

where 𝑁 denotes the valid number of entity pairs in 𝑇 ,
and 𝑟 (𝑒𝑖 , 𝑒 𝑗 ) is the action relationships between entity pair
(𝑒𝑖 , 𝑒 𝑗 ). Notably, our action triplets can contain enti-
ties along with their fine-grained attributes (e.g., “(girl, is,
small)”), since actions inherently depend on both motion
dynamics and static appearance. This ensures a comprehen-
sive, contextually nuanced representation while maintaining
focus on dynamics.
Action State Description Generation. Relying solely on
action triplets may not be sufficient to capture the factual
details of actions due to their inherent ambiguity and vari-
ability across different scenarios. Therefore, we consider the
state of each action, referred to as action states, which can
be caused or inferred by specific actions. Each action state
contains more detailed and comprehensive descriptions, en-
abling the model to gain deeper insights into the fine-grained

action semantics. As shown in Figure 4, we adopt a refined
language instruction 𝑄2 with in-context samples to query
GPT-3.5 to generate state descriptions about actions in the
form of language, denoted as 𝐷, where the in-context sam-
ples consist of the action triplets, the original textual de-
scriptions, and the expected output descriptions, formulated
as

𝐷 = LLM(𝑄2,R𝑡 ). (3)

For example, when querying the GPT-3.5 about “(girl, lap-
top, study)”, GPT-3.5 would generate an answer like “She
focuses on the laptop screen, types on the keyboard, and
maintains a stable posture”.

3.3. Action-aware Multi-modal Prompt Tuning
To address this limitation of pre-trained models in action
perception, we propose an action-aware multi-modal prompt
tuning. Specifically, we design two complementary action-
aware prompts based on different action information: action
triplet prompts and action state prompts, which will be fed
into the image encoder to help CLIP’s visual representation
better capture different levels of action information. For the
early layers of the image encoder, we map the generated
prompted action knowledge into visual prompts by employ-
ing a lightweight action-aware prompt adapter, meaning that
both types of action-aware prompts guided the encoding pro-
cess of images. Moreover, for the later layers of the image
encoder, each layer utilizes an independent prompt, allowing
the layer to independently capture distinct visual and seman-
tic features of the image. To further improve fine-grained
visual perception, we propose an action-aware adaptive in-
teraction module to adaptively capture the salient action cues
relevant to the visual contents.
Action Triplet Prompts. To make action triplet prompts
carry sufficient compositional semantics present in actions,
we design an action-aware triplet encoder with transformer
layers to explicitly model the action relations between paired
objects. Specifically, for each action triplet (𝑒𝑖 , 𝑟 (𝑒𝑖 , 𝑒 𝑗 ), 𝑒 𝑗 )
in R𝑡 , we generate the corresponding word embedding 𝑊𝑦

by employing a CLIP-based tokenizer together with a vo-
cabulary embedding, formulated as

W𝑦 = WordEmbCLIP (𝑦), 𝑦 ∈ {𝑒𝑖 , 𝑟 (𝑒 𝑗 ), 𝑒 𝑗 }. (4)

Subsequently, we concatenate these embeddings to form a
unified representation for each triplet, denoted as 𝑒Δ𝑖 . This
process involves handling a total of 𝐾 action triplets to
produce 𝐾 semantic embeddings, which are subsequently
fed into multiple transformer layers to generate continuous
prompt embedding features p𝑡 , formulated as

p𝑡 = Multi-Transformer( [𝑒Δ1 , 𝑒Δ2 , .., 𝑒Δ𝐾 ]). (5)

Action State Prompts. Action state prompts can be con-
structed by plugging the generated action state descriptions



Input	Sentence 𝑇
Someone	in	a	blue	shirt	and	hat	is	standing	on	

stair	and	leaning	against	a	window

Prompt Template for Action Triplet Generation 𝑄!

Knowledge	Triplets 𝑅"
<“someone”,	“standing	on”,	“stair”>	
<“someone”,	"leaning	against",	

"window">

Prompt Template for Action State 
Description Generation 𝑄#

LLM
LLM

Action	State	Descriptions	from	actions	D
<“someone”,	“standing	on”,	“stair”>	:	the	person	balances	
on	the	stair,	keeping	a	steady	stance	and	looking	down.
<“someone”,	"leaning	against",	"window">:	they	lean	
against	the	window,	resting	their	weight	and	gazing	outside.

Prompt	Template for	Action	Triplet	Generation

Instruction
Your	task	is	to	extract	dynamic	action	phrases	containing	action	relations	from	the	provided	
text.	Ensure	that	your	output	includes	all	entities	mentioned	in	the	sentence,	along	with	their	
attributes.	Additionally,	capture	the	relationships	between	entities	and	the	connections	
between	attributes	and	entities.	Ensure	that	the	extracted	action	phrases	accurately	capture	
the	dynamics	of	the	described	actions.	Provide	the	analysis	in	JSON	format:	{"entity":	"xxx",	
"zzz",	"relations":	<"xxx",	"yyy",	"zzz">}.		All	relations	must	be	triplets	containing	exactly	
three	elements. Do	not	output	anything	other	than	the	JSON	object.

One	small	girl	in	white	t-shirt	is	touching	the	elephant:	
<“girl”,	“wearing”,	“t-shirt”>	

<"girl",	"is",	"small">	
<“girl”,	“touching”,	“elephant”>	

<"t-shirt",	"is",	"white">

In-context	learning	examples

Prompt	Template for	Action	State	Description	Generation

Instruction
Generate	a	concise,	fine-grained	description	for	each	triplet	in	the	format	<subject,	
object,	action>	extracted	from	a	sentence.	The	description	should	specifically	
highlight	the	state	of	the	object	in	relation	to	the	action	performed	by	the	subject,	
with	attention	to	details	of	position	and	posture.	Ensure	that	the	description	is	
succinct,	directly	pertinent	to	the	triplet,	and	avoids	redundancy	with	the	original	
triplet. The	output	should	be	a	JSON	object	where	each	key	is	a	triplet	and	the	
corresponding	value	is	the	state	description.

In-context	learning	examples
<"girl",	"using",	"laptop">:		she	focuses	on	the	laptop screen,	types	
on	the	keyboard,	and	maintains a	stable posture.
<"man",	"chair",	"sit	on">:	Seating	comfortably	on	the	chair,	the	
man	maintains	a	relaxed	posture

Figure 4. Action knowledge generation using LLM.

from actions in a predefined prompt template like “Fine-
grained state description of action triplet <subject, action,
object>is [description]”. These prompts guide the image
encoder to focus on the resulting states of actions in visual
content. We use a frozen text encoder to encode these state
prompts into 𝐾 action state prompt embedding features, rep-
resented as p𝑠 = [p𝑠1 , . . . , p𝑠𝐾 ]

⊤ ∈ R𝐾×𝑑 , where 𝑑 is the
hidden dimension of CLIP.
Prompt Adapter. We feed different types of action-aware
prompts p𝑡 and p𝑠 into a prompt adapter, which consists of
two Multilayer Perceptron (MLP) layers to generate prompt
embedding features. Between these layers, a ReLU acti-
vation and layer-normalization are applied to generate the
action-aware visual prompts:

p𝑡0 = ReLU
(
LN

(
p𝑡
)
· Wdown

)
· Wup,

p𝑠0 = ReLU
(
LN

(
p𝑠
)
· Wdown

)
· Wup,

(6)

where the feature dimension is first scaled from 𝑑 to 𝑡 (𝑡 ≪ 𝑑)
by the learnable matrix Wdown ∈ R𝑑×𝑡 and then expanded
back to 𝑑 by Wup ∈ R𝑡×𝑑 .
Action-aware Adaptive Interaction Module. To reduce
the disturbance caused by irrelevant or noise information
in the prompts, we construct an action-aware adaptive in-
teraction module to adaptively tune the visual features by
focusing on key information relevant to actions, thereby al-
lowing the prompted image features to better align with the
corresponding textual features, as shown in the right part of
Figure 3.

Specifically, we first divide the input image X ∈ R𝐻×𝑊×𝐶

into a sequence of 𝑀 image patches, denoted as X =

{x1
𝑝 , x2

𝑝 , . . . , x𝑀𝑝 }, X ∈ R𝑀×𝑑𝑣 . Subsequently, each patch is
transformed into an embedding vector and augmented with
a learnable position embedding. The pre-processed image
patch embedding for the transformer input is represented as
E0 = [e1

0, e
2
0, . . . , e

𝑀
0 ], where e𝑖0 ∈ R𝐶𝑒 is the patch embed-

ding corresponding to position 𝑖, with 𝐶𝑒 being the number
of channels for each embedding. We take pre-processed im-
age patch embedding E0, action triplet prompt embedding
features p𝑡0 and action state prompt embedding features p𝑠0
as query, key, and value, formulated as

p̃𝑡0 = Cross-Attn(p𝑡0,E0), p̃𝑠0 = Cross-Attn(p𝑠0,E0),
V𝑡𝑐𝑠,A𝑡𝑐𝑠 = Self-Attn(p̃𝑡0),V

𝑠
𝑐𝑠 ,A𝑠𝑐𝑠 = Self-Attn(p̃𝑠0).

(7)

where A𝑡𝑐𝑠 and A𝑠𝑐𝑠 are the attention matrix, Cross-Attn(·)
and Self-Attn(·) denote the cross-attention and self-attention
operation, respectively. In this manner, we make the original
patch feature attend to action triplet prompts and action
state prompts, resulting in augmented image features. These
features are then transformed by MLP and a re-weighting
strategy. The whole process with attention is formulated as

V = MLP( [V𝑡𝑐𝑠,V𝑠𝑐𝑠]), Ṽ = (𝜆A𝑡𝑐𝑠 + (1 − 𝜆)A𝑠𝑐𝑠)V, (8)

where [·] indicates the concatenation operation, Ṽ =

{v1, v2, . . . , v𝐿} ∈ R𝐿×𝑑 denotes the action-enhanced vi-
sual features, and 𝜆 is a hyper-parameter with a value of
0.7. Afterward, we randomly initialize learnable visual vec-
tor, defined as P𝑣 = [P]1 [P]2 . . . [P]𝑁 , where [P]𝑛 (𝑛 ∈
{1, . . . , 𝑁}) keeps the same dimension as the image
patch embedding. We concatenate the learnable vi-
sual prompts and action-enhanced visual features in-
terlaced, resulting in the final visual features z′

𝑙
=

[v1, v2, . . . , v𝐿 , [P]1 [P]2 . . . [P]𝑁 ] . Subsequently, we feed
them into the rest 𝐿-layer transformer layers of visual en-
coder 𝜃 for generating the action-aware visual embedding:

z′𝑖 = 𝜃𝑖 (z′𝑖−1), 𝑖 ∈ [𝑙 + 1, 𝐿] . (9)

The output of the last layer z′

𝑙
is treated as the prompted

image features z𝑖𝑚𝑔 used for optimization with contrastive
loss and triplet loss in Eq. 10 and Eq. 11.



3.4. Training
We introduce a two-stage training procedure to learn an
action-aware vision-language model.
The first training stage. In this stage, the objective is to
update newly added parameters of action-aware prompts,
triplet encoder, and action-aware adaptive interaction mod-
ule while keeping the original weights of CLIP frozen.
Based on the prompted image features and textual features,
the contrastive loss is defined by

Lstage1 = Li2t + Lt2i,

Li2t (𝑖) = − log
exp(sim(z𝑖𝑚𝑔

𝑖
, z𝑡𝑒𝑥𝑡
𝑖

)/𝜏)∑𝑁
𝑗=1 exp(sim(z𝑖𝑚𝑔

𝑖
, z𝑡𝑒𝑥𝑡
𝑗

)/𝜏)
, (10)

Lt2i (𝑖) = − log
exp(sim(z𝑖𝑚𝑔

𝑖
, z𝑡𝑒𝑥𝑡
𝑖

)/𝜏)∑𝑁
𝑗=1 exp(sim(z𝑖𝑚𝑔

𝑗
, z𝑡𝑒𝑥𝑡
𝑖

)/𝜏)
,

where z𝑡𝑒𝑥𝑡 denotes the final text embeddings encoded by
a frozen text encoder given an input caption 𝑇 , cos(·) is
the cosine similarity between the inputs, and 𝜏 is a learn-
able temperature parameter. The terms Li2t and Lt2i refer
to image-to-text and text-to-image contrastive losses, re-
spectively. By minimizing Li2t and Lt2i, the action-aware
prompts will be updated during training through gradient
backpropagation.
The second training stage. In this stage, only the pa-
rameters of the action-aware adaptive interaction module in
visual encoder are optimized while keeping the action-aware
prompts and prompt adapter frozen. To boost the final per-
formance, we employ the triplet loss in our second training
stage for optimization, given by

Lstage2 = max(𝑑𝑝 − 𝑑𝑛 + 𝛼, 0), (11)

where 𝑑𝑝 and 𝑑𝑛 represent the feature distances of the posi-
tive pair and negative pair, respectively, and 𝛼 is the margin
of Ltri.

The whole training process utilizes the action-aware
prompts to mine and store the hidden states of the pre-trained
image encoder, enabling CLIP to retain its advantages. The
first stage focuses on learning effective prompts to fully har-
ness the capabilities of CLIP, while the second stage refines
multi-modal interactions within a more fine-grained embed-
ding space.

3.5. Inference
First of all, the original CLIP model is used to pre-select
the top-k (i.e., k=20) samples, after which our method is
applied to refine features and re-rank results, enabling fast
retrieval. Specifically, for image-to-text retrieval, we first
extract text features for pre-selected top-k gallery texts and
enrich their semantics using LLM-generated action triplets
and state descriptions. Then we extract the image feature

enhanced by the enriched texts. Finally, we retrieve the target
text by calculating the similarities between the enhanced
image feature and all enhanced text features. A similar
procedure is adopted for text-to-image retrieval.

4. Experiments
4.1. Datasets & Evaluation Metrics
To evaluate the effectiveness of the proposed method,
we conduct extensive experiments using two datasets:
Flickr30K [48] and COCO [3]. More details about the
statistics of these datasets are reported in the supplemen-
tary material.

To evaluate the image-text matching performance, we
measure the proportion of queries that match the correct
item within the top-k results, denoted as R@K, where K
takes values of 1, 5, and 10. The sum of all R@K values
is calculated to evaluate the overall matching performance,
denoted as Rsum. More details about implementation can
be found in the supplementary material.

4.2. Comparison with State-of-the-Art Methods
To verify the effectiveness of the proposed method, we com-
pare it with several state-of-the-art methods on the Flickr30K
and COCO datasets. For fair comparisons, all these methods
are CLIP-based without pre-training.

The comparison results on the two datasets are shown
in Table 1. We have the following observations: 1) Our
method achieves significant performance improvements over
the pre-trained CLIP models in different ViT architectures.
This clearly indicates that enriching the fine-grained action
semantic information of visual modality helps image-text
alignment. 2) Compared to other CLIP-based methods,
Our method achieves competitive results on both datasets
in terms of most evaluation metrics, demonstrating the ef-
fectiveness of incorporating action knowledge into prompt
tuning.

It is worth noting that our method achieves significant
performance improvements using the ViT-B backbone com-
pared to those methods based on the ViT-L backbone. The
possible reason is that the ViT-B architecture has fewer lay-
ers, smaller hidden dimensions, and fewer attention heads,
and is inherently less capable of capturing and process-
ing fine-grained image details. Our method can address
this limitation by injecting action knowledge into CLIP
through action-aware multi-modal prompt tuning, enabling
the model to achieve a more fine-grained action perception
ability.

4.3. Ablation Study
We perform in-depth ablation studies to evaluate each com-
ponent of our method on the COCO dataset, using pre-
trained CLIP with a ViT-B/16 backbone as the baseline. We



Backbone Method
COCO (5K test images)

Rsum
Flickr30K (1K test images)

RsumImage-to-Text Text-to-Image Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ViT-B/32

CLIP [31] 50.2 74.6 83.6 30.4 56.0 66.8 361.6 79.0 94.3 98.2 58.0 82.9 89.9 502.3
MGCA [36] 54.5 78.6 86.8 37.7 63.7 74.0 395.3 81.5 93.9 96.8 64.4 86.5 92.0 515.1
PyramidCLIP [9] 52.8 78.1 - 38.8 64.9 - - 84.2 96.4 - 69.1 89.8 - -
CLIPDualDIS [42] - - - 37.9 63.4 73.4 - - - - 59.0 83.4 90.1 -
OpenCLIP [5] - - - 39.4 65.5 75.7 - - - - 63.9 87.3 93.2 -
SaCo [45] 54.6 77.6 - 36.1 62.0 - - 81.7 95.5 - 64.9 88.1 - -
Ours 55.5 79.2 87.8 39.9 66.0 76.3 404.7 85.1 97.4 98.3 69.9 90.1 94.8 535.6

ViT-B/16

CLIP [31] 52.4 76.9 84.8 33.1 58.5 69.2 374.9 81.2 96.4 98.5 62.2 85.7 91.8 515.8
MGCA [36] 57.6 80.5 87.8 39.8 65.7 75.3 406.7 82.2 96.1 98.1 67.7 88.5 93.2 525.8
PyramidCLIP [9] 55.7 80.8 - 42.6 68.6 - - 85.6 97.7 - 74.5 92.9 - -
EVA-02-CLIP [34] 58.7 80.7 88.2 42.2 66.9 76.3 413.1 85.7 96.7 98.9 71.2 91.0 94.7 538.2
FineCLIP [15] 54.5 78.6 85.8 40.2 66.5 76.1 401.7 82.5 96.4 98.6 67.9 89.1 94.1 528.6
SaCo [45] 57.8 80.0 - 39.8 64.7 - - 85.5 96.5 - 69.1 90.1 - -
Ours 58.4 81.8 89.1 43.2 69.5 79.0 421.1 88.1 98.0 99.2 74.7 93.1 95.8 548.9

ViT-L/14-336

CLIP [31] 57.3 80.6 87.8 37.9 63.4 73.4 394.2 86.6 98.0 99.1 67.1 88.9 93.2 532.9
MGCA [36] 59.7 83.2 89.7 44.3 69.6 78.8 425.3 86.9 97.3 98.6 74.4 91.7 95.4 544.3
FILIP [47] 61.3 84.3 90.4 45.9 70.6 79.3 431.8 89.8 99.2 99.8 75.0 93.4 96.3 553.5
REACT [23] 63.3 85.1 - 47.5 72.0 - - 90.4 99.1 - 76.5 93.7 - -
MetaCLIP [41] 65.5 85.2 91.1 48.2 72.3 81.1 443.4 89.5 98.8 99.7 76.8 93.9 96.6 555.3
Ours 62.5 85.7 91.6 44.1 72.9 81.7 438.5 91.5 99.5 99.8 74.0 94.4 97.6 556.7

Table 1. Comparative results (without pre-training on external training datasets) on the COCO 5K test set and Flickr30K test set. The best
results and the second best results are marked by bold and underline, respectively.

report the results on the Flickr30K dataset in the supplemen-
tary material.

Action
Triplet

Hand-Craft
Triplet

Action
State Vis Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10
✓ 56.2 81.0 88.4 42.4 68.9 78.3

✓ 55.5 80.7 88.1 41.5 68.1 77.9
✓ 53.7 80.9 88.5 42.3 69.1 78.9

✓ ✓ 58.1 81.8 88.5 42.9 69.3 78.7
✓ ✓ ✓ 58.4 81.8 89.1 43.2 69.5 79.0

Table 2. Ablation studies of prompts on the COCO 5K test set.
“Hand-Craft Triplet” denotes replacing the action triplet prompt
with a hand-crafted prompt template, i.e., “A photo capturing a
[subject] performing [action] in relation to [object].”, and “Vis”
denotes visual prompting.
Effectiveness of action-aware multi-modal prompting.
To evaluate the effectiveness of action-aware multi-modal
prompting, we design several variants of our method for
comparison. From the results shown in Table 2, it is obvi-
ous that the proposed action-aware multi-modal prompting
outperforms other variants. Specifically, removing either
the action triplet prompt or the action state prompt leads to
a drop in matching performance. The possible reason is that
the action triplet prompt is designed to explicitly model ac-
tion relations between entities, while the action state prompt
is designed to provide additional fine-grained information
from action states to mitigate ambiguity in action relation-
ships. The combination of these two types of action prompts
can further improve the performance. In addition, removing
the visual prompt weakens the model’s visual perception
ability, thereby hurting the performance.
Effectiveness of action knowledge. To evaluate the effec-
tiveness of incorporating action knowledge in prompting the
pre-trained CLIP, we replace the action-aware multi-modal
prompts with learnable visual prompts, which simplifies the
framework to a standard visual prompt tuning for the vi-
sion encoder. As shown in Table 3, we observe that the

performance drops significantly. This is expected, as incor-
porating action knowledge enhances the fine-grained visual
perception ability of the pre-trained model.
Effective of attribute knowledge. To evaluate the impact
of attribute knowledge in promoting pre-trained CLIP, we
remove attribute knowledge from action triplets. As shown
in Table 3, the results indicate a slight drop in performance,
as attribute knowledge provides more fine-grained details
about the states of object attributes, enriching the overall
semantic understanding of actions.

Method Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

Baseline 52.4 76.9 84.8 33.1 58.5 69.2
w/o action knowledge 55.3 78.8 86.8 41.5 67.3 76.9
w/o attribute knowledge 58.2 81.6 88.6 43.1 68.6 78.2
replace AIM with CAT 57.4 79.9 87.6 41.9 67.8 77.4
Ours 58.4 81.8 89.1 43.2 69.5 79.0

Table 3. Ablation analysis of different components on the COCO
5K test set.

LLMs version Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

Llama-2 Vicuna-7B 58.4 81.4 89.0 43.0 69.2 78.8
Llama-2 Vicuna-13B 58.5 81.7 89.1 43.2 69.4 79.1
GPT-3.5 GPT-3.5-Turbo 58.4 81.8 89.1 43.2 69.5 79.0

Table 4. Ablation study of different LLMs.

Effectiveness of action-aware adaptive interaction. To
evaluate the effectiveness of action-aware adaptive interac-
tion, we replace the action-aware adaptive interaction mod-
ule (denoted as “AIM”) with a concatenation operation (de-
noted as “CAT”). Specifically, we directly concatenate ac-
tion triplet prompts, action state prompts, and learnable vi-
sual prompts to generate multi-modal prompts for prompt
tuning. The results are reported in Table 3, which shows that



using concatenation operation degrades performance. This
demonstrates the vital importance of AIM as it can focus on
key action information and aggregate it to generate attentive
features, thereby reducing the disturbance caused by the ir-
relevant or noisy information retained in the action triplet
prompts and action state prompts.

Method
Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10
Baseline 52.4 76.9 84.8 33.1 58.5 69.2
combined training 56.5 80.2 87.9 42.1 68.0 77.6
one-stage training 56.8 80.5 87.8 41.9 67.8 77.8
two-stage training (Ours) 58.4 81.8 89.1 43.2 69.5 79.0

Table 5. Ablation study of different training.

Effectiveness of different LLMs. To explore the effect of
using different types and sizes of LLMs (i.e., Llama-2-7B,
Llama-2-13B, GPT-3.5), we conduct an ablation study on the
COCO dataset. As shown in Table 4, the results indicate that
using different types and sizes of LLMs has little impact on
performance, demonstrating that even smaller open-source
models can achieve comparable results while reducing costs
and enhancing reproducibility of our method.
Effect of two-stage training. To evaluate the effectiveness
of the proposed two-stage training strategy, we design two
different training strategies for comparison:
• One-stage training: we only use Lstage1 to jointly train

the triplet encoder and action-aware adaptive interaction
simultaneously.

• Combined Training: we optimize the model by com-
bining Lstage1 and Lstage2 into a unified training process
rather than separating the training into two stages.
As shown in Table 5, the results demonstrate that both

one-stage training and combination training are less effec-
tive. In the early stage of training, the learnable visual tokens
cannot effectively describe the image, which negatively im-
pacts the optimization of the image encoder. Additionally,
combination training struggles to achieve desirable results,
as the simultaneous optimization of Lstage1 and Lstage2 leads
to interference between objectives, which hinders effective
feature learning. In contrast, our proposed two-stage train-
ing strategy achieves better performance. During the first
stage, the model focus more on the comparison between
positive samples and negative samples without explicit fixed
distance constraints, which can accelerate training. During
the second stage, the model establishes stable intra-class and
inter-class relationships, further enlarging feature distances
between categories and enhancing sensitivity to subtle fea-
ture differences.

4.4. Qualitative Results
We have presented the comparison results between our
method and CLIP in Figure 5. As shown in Figures 5 (a)

(a) Image-To-Text Ours

CLIP
1. A polar bear res-ng on the ice in 

his home.
2. A polar bear playing with a ball in 

a small pond area.

1. A polar bear standing in the snow. 
with its reflec-on in the water.

2. A polar bear is standing in some 
snow.

(b) Text-To-Image
A person is riding a 

bicycle but there is a 
train in the 

background.

Ours

CLIP

(c) Text-To-Image

The tennis player 
backhands the ball 

during the serve

Ours

CLIP

Ac8on Knowledge
Ac#on Triplet

Ac#on State Descrip#on
The polar bear's paws are firmly planted 
on the cold, soA snow. Its body is upright 

and stable, with its muscles subtly 
engaged to maintain balance.

Ac8on Knowledge
Ac#on Triplet

Action State Description
The person sits securely on the bicycle, 

with hands gripping the handlebars, feet 
steadily pedaling, and eyes focused 

intently ahead, carefully maintaining 
balance and concentration across the ride.

Ac8on Knowledge
Ac#on Triplet

Ac#on State Descrip#on
The tennis player backhands the ball by 

holding the racket upside down, swinging 
it in a wide arc over the shoulder, and then 

flicking the wrist with a swiA mo-on to 
propel the ball forcefully across the court, 

ensuring it lands deep within the 
opponent’s side.

⚠

<polar bear, stand, snow>

<person, ride, bicycle>

<tennis player, backhand, ball>
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Figure 5. The qualitative results on the COCO 5K test set, where
correct matches are marked in ✓⃝ and mismatches in ✗⃝.

and (b), given a text query or an image query, with the help
of action knowledge from LLM, our method retrieves top-
2 ranked results matching the query. In Figure 5 (a), the
action knowledge of “standing” is obviously different from
actions such as “resting” or “playing”. In Figure 5 (b), with
the precise description of “riding”, our method effectively
filters out images of bicycles or trains. However, as shown
in Figure 5 (c), the action knowledge generated by the LLM
for “<tennis player, backhand, ball>” can not accurately
capture the action state of “backhand ball”, resulting in in-
correct retrieval. A more advanced LLM may be able to
solve this problem. More visualization results and analy-
ses of retrieval results can be found in the supplementary
material.

5. Conclusion

We have presented a simple yet effective LLM-enhanced
action-aware multi-modal prompt-tuning method that inte-
grates external action knowledge to prompt the pre-trained
vision-language model. We propose an action triplet prompt
and an action state prompt that use the knowledge of LLM to
help CLIP concentrate on detailed action-related visual cues.
We also design an action-aware adaptive interaction module
to aggregate key information from different prompts, en-
hancing the action-aware visual representations. Extensive
experiments on the COCO and Flickr30K datasets demon-
strate the effectiveness of our method. In the future, we plan
to apply our method to tasks such as video-text matching
and action recognition, where LLMs can assist in perceiv-
ing detailed actions. Furthermore, incorporating LLMs into
the training process of CLIP-like methods may be a potential
direction.
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