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Commonsense Knowledge Prompting for Few-shot
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Abstract—Few-shot action recognition in videos is challeng-
ing as the lack of supervision makes it extremely difficult to
generalize well to unseen actions. To address this challenge,
we propose a simple yet effective method, called knowledge
prompting, which leverages commonsense knowledge of actions
from external resources to prompt-tune a powerful pre-trained
vision-language model for few-shot classification. To that end,
we first collect a large-scale corpus of language descriptions of
actions, defined as text proposals, to build an action knowl-
edge base. The collection of text proposals is done by filling
in a handcraft sentence template with an external action-
related corpus or by extracting action-related phrases from
captions of Web instruction videos. Next, we feed these text
proposals to a pre-trained vision-language model along with
video frames to generate matching scores of the proposals for
each frame, and the scores can be treated as action semantics
with strong generalization. Finally, we design a lightweight
temporal modeling network to capture the temporal evolution
of action semantics for classification. Extensive experiments on
six benchmark datasets demonstrate that our method generally
achieves state-of-the-art performance while reducing the training
computational cost to 0.1% of the existing methods. Code is avail-
able at https://github.com/OldStone0124/Knowledge-Prompting-
for-FSAR.

Index Terms—Few-shot action recognition; knowledge prompt-
ing; pre-trained vision-language model; action semantics

I. INTRODUCTION

Few-shot action recognition in videos aims to classify new
action classes by using very few training samples. To solve
this task, the majority of existing works [1]–[6] formulate the
few-shot recognition problem in a meta-learning paradigm,
where meta-metrics of similarity between actions are first
trained in the training phase and then applied to the nearest
neighbor voting to make predictions in the test phase. Al-
though these methods have achieved promising performance
on many datasets like Kinetics [7], they still suffer from the
very scarcely labeled training data that limits their ability to
generalize to seldom seen or even unseen action classes.

In this paper, we first present an insight that efficiently
adapts a well-pre-trained vision-language model to solve the

Yuheng Shi and Hanxi Lin are with the Beijing Laboratory of Intelligent
Information Technology, School of Computer Science, Beijing Institute of
Technology, Beijing 100081, China (e-mail: shiyuheng@bit.edu.cn).

Xinxiao Wu is with the Beijing Laboratory of Intelligent Information
Technology, School of Computer Science, Beijing Institute of Technology,
Beijing 100081, China, and also with the Guangdong Provincial Laboratory
of Machine Perception and Intelligent Computing, Shenzhen MSU-BIT Uni-
versity, Shenzhen 518172, China (e-mail: wuxinxiao@bit.edu.cn). Xinxiao Wu
is the corresponding author.

Jiebo Luo is with the Department of Computer Science, University of
Rochester, Rochester, NY 14627 USA (e-mail: jluo@cs.rochester.edu).

few-shot action recognition task with minimal training. The
motivation behind this insight is the superior generalization
ability of a pre-trained vision-language model to novel tasks
after it has seen massive image-text or video-text pairs during
pre-training. Therefore, we propose a simple yet effective
method, called knowledge prompting, which explores com-
monsense knowledge of actions from external resources to
prompt-tune the pre-trained vision-language model effectively
for few-shot recognition. In this work, we employ CLIP [8]
as the pre-trained vision-language model.

To be more specific, we first build an action knowledge base
by collecting large-scale textual descriptions of actions from
external resources. These textual descriptions, namely text
proposals, explicitly describe fine-grained movements of body
parts (i.e., atomic actions) such as “human’s hand point to the
tree” and “do a cartwheel”. To ensure that the knowledge base
can cover as many action descriptions as possible, we propose
two strategies to generate abundant and various text proposals.
The first strategy uses a pre-defined sentence template to
generate text proposals, where a sentence template of “subject-
verb-object” is first created, and then the template is filled in
with various action-related words from the external corpus.
The corpus consists of the body motion concepts from the
PaStaNet dataset [9] and the object categories from the Visual
Genome dataset [10]. The text proposals generated in this way
mainly describe basic actions and are used as a body of the
knowledge base. The other strategy is designing a text proposal
network that extracts action-related phrases from the captions
of Web instruction videos to generate descriptions of daily
actions, thus enriching the text proposals in the knowledge
base.

Next, we take the text proposals and the video frames as
inputs to the text encoder and the image encoder of CLIP,
respectively, to learn action semantics for classification. For
each frame, the output matching scores measure how similar
the text proposals are to the visual content, and can be treated
as potentially valuable representations of action semantics with
strong generalization. Finally, we design a temporal modeling
network to model the temporal context relationships between
the proposal matching scores of different video frames, thereby
capturing the evolution of action semantics over time for
action classification. It should be emphasized that we keep
the parameters of CLIP fixed in the training phase, and
only train the lightweight temporal modeling network with
very low computational cost. Extensive experiments on six
benchmark datasets show that our method considerably boosts
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the performance of few-shot action recognition on various
datasets, while greatly reducing the training cost to less than
0.1 % of the existing methods.

The main contributions of our work are three-fold:

• We propose a knowledge prompting method that steers
the pre-trained vision-language model (CLIP) to the few-
shot action recognition task by leveraging commonsense
knowledge from external resources. Our method is sim-
ple yet effective and has a strong generalization ability
without expensive end-to-end training of a large-scale
backbone.

• We propose two strategies to generate abundant and
various textual descriptions of actions to build an action
knowledge base, in order to effectively prompt CLIP for
learning powerful representations of action semantics.

• We design a lightweight temporal modeling network to
model the temporal evolution of action semantics, which
further boosts recognition accuracy.

The remainder of this paper is organized as follows. In
Section II, we summarize previous works related to our
method. Section III describes the proposed knowledge prompt-
ing method for few-shot action recognition. Section IV dis-
cusses experimental results on various benchmark datasets,
and the conclusion is given in Section V.

II. RELATED WORK

A. Pre-Trained Vision-Language Model for Recognition

Pre-trained vision-language models [8], [11] have achieved
great success in visual recognition due to the addition of
natural language to the supervised learning process. The core
problem of applying these models to downstream tasks is
prompt learning [12], which is a technique that seeks to
exploit the learned knowledge encoded in a pre-trained model
without tuning the model itself. Zhou et al. [13] propose to
add learnable contexts to the text input of CLIP to learn task-
relevant prompts for object recognition. Cho et al. [14] formu-
late several vision-and-language tasks in a unified generative
architecture by fine-tuning the multi-modal pre-trained model
using task-specific handcraft prompts. Tsimpoukelli et al. [15]
train the vision model to learn to cooperate with the encoded
common sense knowledge of the frozen language model to
generate open-ended outputs and achieve few-shot learning.

In the field of action recognition, Wang et al. [16] use hand-
crafted labels as the text input of CLIP [8] and fine-tune the
whole pre-trained model. Wu et al. [17] present a two-stream
framework that transfers bidirectional cross-modal knowledge
from CLIP to enhance video recognition, an attribute branch
leverages the video-to-text knowledge to generate attributes for
auxiliary recognition, and a video branch uses the text-to-video
expertise to generate temporal saliency to yield compact video
representation. Different from the aforementioned methods,
our knowledge prompting method takes full advantage of
commonsense knowledge of actions and generates large-scale
prompts to efficiently adapt the pre-trained CLIP model to few-
shot action recognition, which no longer requires fine-tuning
any parameter.

B. Few-shot Action Recognition

Many existing methods of few-shot action recognition con-
centrate on learning the transferable similarity metrics between
actions for the nearest neighbor voting, due to the lack of
training data. Some methods [1], [3]–[5] learn fine-grained
video representations and use dot product or euclidean distance
in the representation space as the similarity metric. Zhu et
al. [3] propose a compound memory network to memorize
key-frame features that are vital for adapting to new tasks. Per-
rett et al. [5] introduce a Transformer-like architecture to learn
an adaptive representation (i.e. query-specific class prototype)
via early fusion between the query video and support videos.
Li et al. [18] summarize the drawbacks of metric learning
as action duration and evolution misalignment, and address
them sequentially through a two-stage network with tem-
poral transformation, temporal rearrangement, and spatially
offset prediction. Wu et al. utilize region representations with
discriminative capability enhanced or adversarially train the
learned latent features through a cross-view verification loss
to explore effective representations for few-shot [19] or fully
supervised [20] video-based person re-identification. There is
also work on explicitly modeling the intrinsic property of
video. Cao et al. [2] propose an ordered temporal alignment
module to explicitly align video sequences using a variant of
the dynamic time warping algorithm. Specifically, they design
a deep distance measurement of the query video with respect
to novel class proxies over its alignment path.

More recently, Zhu et al. [21] focus on exploiting the power-
ful pre-trained vision backbones rather than the meta-learning
paradigm for few-shot action recognition. They present a
classifier-based baseline method and fine-tune the pre-trained
model to learn effective representations. In contrast, our
method neither performs meta-learning nor fine-tunes vision
backbones. It prompts the pre-trained vision-language model
by leveraging external commonsense knowledge of actions to
learn powerful action representations with the supervision of
language.

III. OUR METHOD

A. Overview

We propose a knowledge prompting method for few-shot
action recognition in videos. It prompts the pre-trained CLIP
by using commonsense knowledge from external resources,
thereby generalizing well to rare or even unseen actions.
The commonsense knowledge is represented by textual de-
scriptions of atomic actions, namely text proposals in this
paper, and an action knowledge base is built by collecting
text proposals from an external action-related corpus and video
captions. The core issue of our method lies in how to collect
rich and various text proposals for generating semantic repre-
sentations of actions. To address this issue, we propose two
strategies for collecting text proposals: handcraft generation
via a sentence template and automatic generation via a text
proposal network.

Given an input video, we first take the text proposals as the
text input of CLIP, and take video frames as the image input of
CLIP. Then, for each video frame, CLIP outputs the similarity
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Fig. 1. Overview of the proposed method: a) Exaction of action semantics, where CLIP is used to extract action semantics by calculating the similarities
between text proposals and video frames, and b) Temporal modeling network, where a sequence of action semantics is taken as the input and an action
category label is predicted as the output.

matching scores of the text proposals that comprehensively
describe the action semantics. Finally, we feed the matching
scores of all the video frames into a newly designed temporal
modeling network for action classification, by capturing the
temporal evolution of action semantics. Fig. 1(a) shows the
extraction of action semantics by CLIP, and Fig. 1(b) shows
the temporal modeling network for classification. We only
optimize the lightweight temporal modeling network and keep
CLIP frozen, which achieves high computational efficiency in
training.

B. Review of CLIP

CLIP (Contrastive Language-Image Pre-Training) [8] is
a vision-language model pre-trained on millions of image-
text pairs from Web by using a contrastive learning loss.
CLIP consists of an image encoder and a text encoder, and
predicts the matching score between the input image and
text. It achieves incredible results of recognizing extensive
visual concepts without manual labels and builds a reliable
interaction between vision and text.

In recent years, CLIP has been successfully applied to a
wide variety of downstream vision tasks, including image
classification [13], [22], object detection [23], [24] and object
navigation [25]. Consistent performance on these tasks vali-
dates the excellent generalization ability of CLIP, therefore we
employ CLIP in this work for few-shot action recognition.

C. Generation of Text Proposals

Text proposals are actually abundant textual descriptions of
atomic actions, and our action knowledge base is built by
collecting text proposals from an external action-related corpus
and video captions. The text proposals are generated by two
strategies: (1) filling in a handcraft sentence template using

action-related words; (2) automatically generating from web
video captions using a text proposal network.

1) Handcraft Generation via Sentence Template: The hand-
craft generation of text proposals is implemented by first
creating a sentence template of “subject-verb-object” and then
filling in the template using the action-related words from
the external corpus. Although currently there is no corpus for
directly describing human actions, there are still action-related
datasets like PaStaNet [9] and Visual Genome [10]. So we
use the body motion concepts from the PaStaNet dataset and
the object categories from the Visual Genome dataset as the
action-related corpus.

PaStaNet has a total of 93 states of 10 body parts, such
as “hand, put on” and “head, kiss”, which provides subjects
and verbs in the sentence template. Visual Genome has dense
annotations of objects and scenes in images, and a total of
5,996 noun words or phrases in the annotations are selected
as objects in the sentence template. In particular, all transitive
verbs or phrases from PaStaNet are paired with nouns or
noun phrases from Visual Genome, to fill in the sentence of
“Human’s [body part] [state] the [object]”. For example, the
body part state “foot, run to” and the noun “bed” are used to
generate the text proposal “Human’s foot run to the bed”.

In this way, we generate 380,000 initial text proposals.
However, they can not be directly fed into CLIP, since some
linguistically unreasonable proposals will hurt the performance
and the high dimension of matching score vector will make
the computation very expensive. So we use a pre-trained mask-
based language model, BERT [26], to filter the text proposals.
To be more specific, we mask the object part (nouns) in the
text proposals and use BERT to calculate the probabilities of
the masked nouns according to the subject and the verb. If the
probability is lower than a threshold λ (the value of λ will be
analyzed in the experiments), the corresponding proposal will
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Fig. 2. Overview of the handcraft generation of text proposals via a sentence template. The action-related words from the PaStaNet and Visual Genome
datasets are used to fill in the sentence template to generate initial text proposals, and then the BERT model is used to filter out linguistically unreasonable
text proposals.
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Fig. 3. Overview of the automatic generation of text proposals via text proposal network (TPN). TPN is actually a BERT token classifier, consisting of a
BERT model and a fully connected layer. (a) Training stage: TPN is trained using the BIO-labeled captions. (b) Generation stage: text proposals are generated
from input video captions via TPN.

be discarded. For example, for the masked proposal “Human’s
foot stands on the [MASK]”, we tend to discard the nouns
“code” and “license” with lower probabilities and adopt the
nouns “bed” and “wood” with higher probabilities. Finally,
we collect more than 50,000 text proposals as the main body
of the knowledge base. Fig. 2 illustrates the process of the
handcraft generation of text proposals via sentence template.

2) Automatic Generation via Text Proposal Network: To
generate more diverse text proposals to further improve the
scalability of the knowledge base, we propose a text proposal
network (TPN) that automatically extracts text proposals of
daily actions from the action-related captions of Web instruc-
tion videos. It takes video captions as input and outputs action
description phrases as the text proposals.

To collect the captions of instruction videos from the Web,
we use query keywords like “how to”, “tutorial” and “teach”
to search action-related instruction videos such as diving
and gymnastics tutorial videos from Youtube, and crawl the
corresponding captions that have abundant action descriptions.
We sample 10 captions with about 50,000 words as the training
data and annotate the words using the BIO format annotation
method [27]. Specifically, for each action description (i.e.,
phrase or sentence), “B” is used to label the first word, and “I”
is used to label the remaining words. For other descriptions
that do not describe actions, “O” is used to label the words.

TPN consists of a BERT model to extract the token feature
of the input sentence, and a fully connected layer to judge
whether or not a token belongs to the output text proposal.
Specifically, it classifies the input words into three classes:

the first words of action descriptions (“B”), the remaining
words of action descriptions (“I”), and the words of non-
action descriptions (“O”). The training captions with their
corresponding BIO annotations are used to train TPN, and
a cross-entropy loss is used for model optimization. Fig. 3(a)
shows the training of TPN. Given a training caption of n words
with their corresponding ground-truth labels {a1, a2, ..., an},
the cross entropy loss for word classification is defined as

LTPN (θ) = − 1

n

n∑
i=1

∑
c∈C

yic log ŷic (1)

where C denotes the label set {“B”,“I”,“O”} and θ denotes
the parameters of BERT and the fully connected layer. yic
represents the ground-truth label of the word wi, formulated
by

yic =

{
1, if ai = c

0, otherwise.
(2)

We fine-tune the entire model during training. For the
training details, we apply a method named BertForTokenClas-
sification, which replaces the pooling layer of original BERT
with a classification layer, since each word has to be predicted
for ‘BIO’ classification.

In the generating stage, we use the trained TPN to classify
the words of an input caption into “B”, “I” or “O”, and take
the words predicted as “B” or “I” as the output text proposals.
Fig. 3(b) shows the generation of text proposals using TPN.
By applying the trained TPN to the instruction video captions,

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2024.3361157

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2024 at 02:21:10 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

we generate about 4,000 text proposals which further enriches
the knowledge base.

D. Temporal Modeling of Action Semantics

The generated text proposals are taken as the input of
the text encoder in CLIP, and the video frames are fed into
the image encoder in CLIP. The output similarity matching
scores between the text proposals and each frame actually
represent the action semantics of the frame, owing to the great
potential of CLIP in bridging the two modalities of vision and
language. To capture the temporal relationships between action
semantics of different video frames for classification, we
propose a temporal modeling network that integrates temporal
convolution and multi-head self-attention.

1) Extraction of Action Semantics: Given an input video
with n frames {f1, f2, ..., fn}, and a set of m text proposals
{p1, p2, ..., pm}, CLIP calculates the matching similarities
between the frames and the proposals, denoted as S ∈ Rn×m,
where Sij represents the matching score between the i-th
video frame fi and the j-th text proposal pj . The higher Sij is,
the more relevant pj is to fi. The similarity matching scores
represent how the corresponding textual descriptions of actions
relate to the frames, and thus can be treated as the action
semantics of the frames. Let vi = [Si1,Si2, ...,Sim] denote
the i-th row of S, and it represents the action semantics of the
i-th frame. Since the collected text proposals cover rich and
various descriptions of atomic actions, the action semantics
are more like intermediate-level representations of actions with
strong generalization.

It is worth mentioning that the extraction of action semantics
does not require training any parameter of CLIP, and we
only need to perform the extraction process once for each
sample and store the action semantics offline during training.
This differs from other previous methods [2], [5], [16] that
require complete forward and back propagation using the
backbone network for each sample in each iteration. Therefore,
our method maintains an extremely low computational cost
while achieving state-of-the-art few-shot action recognition
performance.

2) Temporal Modeling Network: To capture the tempo-
ral contextual relationships between the action semantics to
further improve the recognition performance, we design a
lightweight temporal modeling network (TMN), in which the
action semantics are scaled, combined, time-series modeled,
and finally mapped to the action category space.

As illustrated in Fig. 1(b), TMN mainly consists of a
batch normalization layer, multiple channel-wise temporal
convolution layers, and a multi-head self-attention module.
Given an input sequence of action semantics {v1,v2, ..,vL},
where vi is the action semantics of the i-th video frame, the
batch normalization layer is first employed to eliminate the
distribution bias of CLIP for fitting the prior distribution to its
training data. Then the multiple channel-wise temporal con-
volutions with linear transformation and batch normalization
are applied for the temporal modeling of action semantics. In
the multiple channel-wise temporal convolutions, we perform
1D-CNNs on the frame sequence, including a 1×1 kernel to

reduce the semantic feature channels for each frame and a
1×3 kernel to extract local temporal feature between adjacent
frames. Finally, the multi-head self-attention module is used
for global temporal modeling of the features of all frames, and
a linear category header is used for classification. We use a
cross-entropy loss to train TMN.

IV. EXPERIMENTS

A. Datasets

We conduct experiments on six action datasets for evalu-
ation, including Kinetics [7], Something Something V2 (SS-
V2) [33], HMDB51 [34], UCF101 [35], Diving48-V2 [36],
and FineGym [37].

Kinetics [7] is a large-scale high-quality dataset of YouTube
videos with various human actions, including human-object
interactions such as playing a musical instrument, and human-
to-human interactions such as shaking hands. We adopt the
few-shot version [3] that contains 100 categories selected
from Kinetics, where the categories are split into 64/12/24 for
train/validation/test sets, respectively, and there are 100 videos
for each category.

SS-V2 [33] is a large collection of labeled videos that
record fine-grained actions between human hands and objects.
It contains 220,847 densely-labeled videos covering 174 cat-
egories. We take the existing splits proposed in [2], where
64/12/14 categories with 77,500/1,925/2,854 videos are in
train/validation/test sets, respectively.

HMDB51 [34] is a relatively small dataset with 51 cat-
egories, and most videos come from movies or public
datasets. The actions mainly include facial movements, face-
object interactions, body movements, body-object interactions
and human-human interactions. We follow the same proto-
col introduced in [4] which takes 31/10/10 categories for
train/validation/test sets, respectively, and each category has
at least 100 videos.

UCF101 [35] is a popular action recognition dataset of
realistic action videos collected from YouTube. It has 13,320
videos covering 101 categories. We also follow the same
protocol introduced in [4], where 70/10/21 categories with
9,154/1,421/2,745 videos are for train/validation/test sets, re-
spectively.

Diving48-V2 [36] is a fine-grained action dataset and con-
sists of diving videos. It has 18,000 videos covering 48 cate-
gories and includes four attributes (takeoff, somersaults, twists
and dive). We take 36/6/6 categories for train/validation/test
sets, respectively.

FineGym [37] is a large-scale and hierarchically labeled
fine-grained action dataset built on gymnasium videos. It pro-
vides temporal annotations at both action and sub-action levels
with a three-level (event, set, element) semantic hierarchy. We
use the element-level actions with 99 categories for exper-
iments, and take 72/13/14 categories for train/validation/test
sets, respectively.

B. Implement Details

During training, CLIP is frozen and only the temporal
modeling network is trained. During test, the parameters of
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TABLE I
COMPARISON RESULTS (%) BETWEEN DIFFERENT METHODS OF 5-WAY 5-SHOT ON THE KINETICS, SS-V2, HMDB51, UCF101, DIVING48-V2 AND

FINEGYM DATASETS. THE “BACKBONE” COLUMN REPRESENTS WHETHER THE METHOD HAS A BACKBONE TO BE TRAINED.

Method Backbone(trained) Kinetics SS-V2 HMDB51 UCF101 Diving48-V2 FineGym
TARN [1] C3D(✓) 80.7 - - - - -
ARN [4] C3D(✓) 82.4 - 60.6 83.1 - -
TARN [1] ResNet-50(✓) 78.5 - - - - -
CMN [3] ResNet-50(✓) 78.9 - - - - -
CMN-J [28] ResNet-50(✓) 78.9 - - - - -
OTAM [2] ResNet-50(✓) 85.8 52.3 72.1 - 56.2 67.3
TA2N [18] ResNet-50(✓) 85.8 61.0 73.9 95.1 - -
TRX [5] ResNet-50(✓) 85.9 64.6 75.6 96.1 62.6 72.7
STRM [29] ResNet-50(✓) 86.7 68.1 77.3 96.9 - -
MTFAN [30] ResNet-50(✓) 87.4 60.4 74.6 95.1 - -
HyRSM [31] ResNet-50(✓) 86.1 69.0 76.0 94.7 - -
STRM [29] ViT-B(✓) 91.2 70.2 81.3 98.1 - -
CLIP [8] ViT-B(%) 94.2 26.2 31.3 93.5 22.9 20.1
CLIP with TMN ViT-B(%) 91.7 56.0 84.7 99.0 78.8 74.0
Ours ResNet-50(%) 90.4 57.0 83.6 99.1 79.6 76.4
Ours ViT-B(%) 94.3 62.4 87.4 99.4 82.6 76.8

TABLE II
COMPARISON RESULTS (%) BETWEEN DIFFERENT METHODS OF 5-WAY 1-SHOT ON THE KINETICS, SS-V2, HMDB51, UCF101, DIVING48-V2 AND

FINEGYM DATASETS. THE “BACKBONE” COLUMN REPRESENTS WHETHER THE METHOD HAS A BACKBONE TO BE TRAINED.

Method Backbone(trained) Kinetics SS-V2 HMDB51 UCF101 Diving48-V2 FineGym
TARN [1] C3D(✓) 66.6 - - - - -
ARN [4] C3D(✓) 63.7 - 45.5 66.3 - -
TARN [1] ResNet-50(✓) 64.8 - - - - -
CMN [3] ResNet-50(✓) 60.5 - - - - -
OTAM [2] ResNet-50(✓) 73.0 42.8 - - 53.5 61.5
TA2N [18] ResNet-50(✓) 72.8 47.6 59.7 81.9 - -
TRX [5] ResNet-50(✓) 63.6 42.0 - - 41.3 62.3
MTFAN [30] ResNet-50(✓) 74.6 45.7 59.0 84.8 - -
HyRSM [31] ResNet-50(✓) 73.7 54.3 60.3 83.9 - -
Huang et al. [32] ResNet-50(✓) 73.3 49.3 60.1 71.4 - -
CLIP [8] ViT-B(%) 94.2 26.2 31.3 93.5 22.9 20.1
CLIP with TMN ViT-B(%) 82.0 41.8 73.4 94.6 67.0 66.2
Ours ResNet-50(%) 78.0 41.9 67.7 92.8 65.0 67.8
Ours ViT-B(%) 85.2 44.7 75.8 97.4 68.1 68.6

both CLIP and the temporal modeling network are kept fixed,
except for the linear category header that is fine-tuned for the
target classes. ViT-B/16 [38] is used as the image encoder and
the text encoder of CLIP. The pre-processing of image and
text feature extraction remains the same as the original CLIP.
The temporal sparse sampling [39] is adopted to sample video
frames as the input of CLIP, and the number of sampled frames
is set to 16 for each video.

In terms of model training, SGD with momentum [40]
is used as the optimizer. The learning rate is initially set
to 0.001 and is attenuated by 10 times at 20, 30, and 40
training epochs, respectively. A random dropout layer with
a dropout probability of 0.05 is applied after the first batch
normalization layer of the temporal modeling network. The
momentum coefficient is 0.9, the L2 regularization coefficient
is 0.001, and the batch size is 32.

In terms of test settings, Adam [41] is used as the optimizer.

The initial learning rate is 0.01, and the exponential decay rate
coefficients for moment estimates are set to 0.5 and 0.999. The
training stops after 10 training epochs. The L2 regularization
coefficient is 0 and the batch size is 16. The prediction result of
a single sample is the average prediction result on 10 random
samplings of the video in a temporal sequence, as the number
of frames in each video sample is about 150 to 200 and we
sample 16 frames from each video with the percentage of
frames in a certain range (8% to 11%). The standard few-shot
evaluation is employed on all datasets, taking 5-way 5-shot for
example, we randomly select 5 categories from the test data
(5-way), and randomly select 10 videos from each category,
of which 5 videos serve as the support set (5-shot) and the
other 5 videos serve as the query set. The average accuracy
over 500 random test tasks is reported, following TARN [1].
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TABLE III
RESULTS (%) OF ABLATION STUDIES ON THE KINETICS, SS-V2, HMDB51, UCF101, DIVING48-V2 AND FINEGYM DATASETS.

Method Kinetics SS-V2 HMDB51 UCF101 Diving48-V2 FineGym
w/o knowledge 91.7 56.0 84.7 99.0 78.8 74.0
w/o template 90.0 58.8 83.0 98.0 80.0 74.5
w/o TPN 94.1 62.2 86.8 99.6 81.5 76.1
w/o TMN 93.3 49.0 85.2 99.2 63.7 69.0
Ours 94.3 62.4 87.4 99.4 82.6 76.8

TABLE IV
RESULTS (%) OF USING THE TEXT PROPOSALS GENERATED BY HANDCRAFT SENTENCE TEMPLATE WITH DIFFERENT λ ON THE KINETICS, SS-V2,

HMDB51, UCF101, DIVING48-V2 AND FINEGYM DATASETS.

Value of λ Proposal Number Kinetics SS-V2 HMDB51 UCF101 Diving48-V2 FineGym
6× 10−4 14388 92.1 60.0 85.1 99.0 80.1 74.8
3× 10−4 25172 93.0 61.3 86.1 99.1 80.8 75.0
2× 10−4 33763 93.5 61.6 85.3 99.2 80.7 76.1
1× 10−4 53133 94.1 62.2 86.8 99.6 81.5 74.9

TABLE V
RESULTS (%) OF ABLATION STUDIES OF DIFFERENT INPUT FRAME
NUMBERS FOR 5-WAY 5-SHOT ON THE KINETICS, HMDB51 AND

DIVING48-V2 DATASETS.

Backbone Frames Kinetics HMDB51 Diving48-V2
ViT/B 8 94.0 87.0 77.9
ViT/B 16 94.3 87.4 82.6
ViT/B 32 94.2 86.9 81.4

ResNet-50 8 89.9 83.4 73.9
ResNet-50 16 90.4 83.7 79.6
ResNet-50 32 90.2 83.6 69.9

TABLE VI
RESULTS (%) OF DIFFERENT DATASETS IN HANDCRAFT GENERATION OF
TEXT PROPOSALS FOR 5-WAY 5-SHOT ON THE KINETICS, HMDB51 AND

DIVING48-V2 DATASETS.

Text Proposal Nouns Kinetics HMDB51 Diving48-V2
Visual Genome 5996 94.1 87.4 81.5
ImageNet-1k 1000 90.4 81.9 78.4

C. Experimental Results

1) Comparison with State-of-the-Art Methods: Table I
and II shows the comparison results of the 5-way 5-shot and
5-way 1-shot evaluation with the state-of-the-art methods on
the six action datasets. It can be observed that our method
generally achieves the best results on most datasets. This
benefits from the strong generalization of extracted action
semantics by using the collection of abundant text proposals
and the powerful vision-language matching ability of CLIP.
Moreover, we compare our method with OTAM and TRX in
terms of training computational cost and inference speed of
model. The results are reported in Table VII, which shows
that the computational cost of our method is extremely low,
mainly due to the frozen CLIP parameters and the lightweight
temporal modeling network. We also observe that the inference
time of our method is slower than OTAM and TRX, as we use
the support data to fine-tune the 5-way linear classifier during
each test task. The experiments are carried out on one NVIDIA
GeForce RTX 3090 GPU.

We also observe that the proposed method performs not

TABLE VII
COMPARISON RESULTS (%) OF COMPLEXITY STUDIES FOR 5-WAY 5-SHOT

ON THE DIVING48-V2 DATASET.

Method Backbone(trained) FLOPs Inference Time
OTAM ResNet-50(✓) 994.3 112.0ms
TRX ResNet-50(✓) 1026.7 105.9ms
Ours ResNet-50(%) 0.8 193.6ms

very well on the SS-V2 dataset, probably due to that most
of the actions in SS-V2 are about fine-grained hand-object
interactions, such as “pretending to put something underneath
something” and “moving something across a surface until it
falls down”, and it is extremely difficult to collect relevant
descriptions of these actions from external resources as text
proposals.

2) Comparison with Baseline Method: We compare our
method with a baseline method, called CLIP, which directly
uses only the visual features extracted by the image encoder
of CLIP for action recognition without temporal modeling.
We also introduce CLIP with the temporal modeling network
(CLIP with TMN) for comparison, where TMN follows the
CLIP image encoder for few-shot action recognition.

The results are shown in the bottom part of Table I. We
can observe that our method achieves better results than CLIP
on all the datasets, especially on SS-V2, Diving48-V2 and
FineGym, which demonstrates the superiority of extracting
action semantics via prompting CLIP using commonsense
knowledge and modeling the temporal information of action
semantics by TMN.

We also observe that CLIP with TMN performs worse than
CLIP on Kinetics, probably due to that the data distribution
of Kinetics is relatively close to that of CLIP’s pre-training
data, i.e., they both are common images and video screenshots
collected from Internet, which have the characteristics of weak
temporal variation. Therefore, CLIP can take advantage of its
strong generalization and achieve better results.
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Fig. 4. Results comparison between “w/o knowledge” and our method on different categories in the Kinetics dataset. The horizontal axis indicates the action
category label and the vertical axis indicates the standard 5-way 5-shot recognition accuracy.
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Fig. 5. Comparison results between “w/o knowledge” and our method on
different categories in the HMDB51 dataset. The horizontal axis indicates the
action category label and the vertical axis indicates the standard 5-way 5-shot
recognition accuracy.

D. Ablation Studies

To study different individual components in-depth, we intro-
duce several variants of our method for comparison as follows.

• w/o knowledge: The knowledge base is removed to
evaluate the contribution of text proposals. In this case,
only the visual features from the image encoder of CLIP
are directly fed into the temporal modeling network for
classification.

• w/o template: The handcrafted text proposals using the
sentence template are removed to evaluate their effective-
ness. In this case, only the text proposals generated by the
text proposal network are used to extract action semantics
for classification.

• w/o TPN: The automatically generated text proposals
using the text proposal network are removed to evaluate
their effectiveness. In this case, only the text proposals
generated by the sentence template are used.

• w/o TMN: The temporal modeling network is replaced by
a linear mapping layer along with a batch normalization
layer to evaluate its importance to classification.

The results of ablation studies on the six datasets are shown
in Table III. We have the following observations:

• The performance degrades on all the datasets when re-
moving the text proposals, which validates the benefit of
prompting CLIP using external knowledge to enhance the
generalization ability in few-shot recognition.

• When removing the text proposals generated by the
sentence template, our model shows performance degra-
dation on all datasets. Such results clearly verify the
strong generalization ability of the template-generated
text proposals and their dominance in the knowledge
base.

• When removing the text proposals automatically gen-
erated by TPN, the performance also drops on most
datasets, which indicates the efficacy of extracting action
descriptions from the captions of Web instruction videos
on enriching the knowledge base of text proposals. It
should be mentioned that the proposals generated by TPN
will inevitably contain some noise words since some
video captions are automatically generated by speech
recognition, but experiments show that this does not affect
their vital role in recognition.

• When removing TMN, our method achieves much worse
results, clearly demonstrating that it is essential to capture
the temporal relationships between action semantics for
action classification.

Fig. 4 and 5 show the comparison results between “w/o
knowledge” and our method of different action categories
on the Kinetics and HMDB51 datasets, respectively. It is
evident that our method improves the recognition accuracy
of most categories on the two datasets, which suggests that
the collection of a large amount of high versatility action
description proposals enables the generation of more granular
action semantics for video frames than traditional visual fea-
tures, thereby enhancing the capacity to distinguish between
different categories. We also observe that our method with
knowledge does not perform very well on a few categories,
such as “kick” and “kick ball” on the HMDB51 dataset, and
this may be due to the fact that these categories have similar
physical motions and so their action semantics are too similar
to distinguish them.

To further analyze the effectiveness of the proposed tem-
poral modeling network (TMN), we visualize the features of
action semantics before (“w/o TMN”) and after TMN (“our
method”) using t-SNE [42] on the Kinetics and HMDB51
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Fig. 6. Feature visualization comparisons between “w/o TMN” and our method on the Kinetics and HMDB51 datasets using t-SNE. Five samples from each
category are shown and five categories are shown. Different colors and shapes represent different categories.

datasets in Fig. 6. In the 5-way 5-shot setting, five samples
from each category are shown and five categories are shown.
We can observe that the features learned by TMN are more
discriminative for classification, which verifies its superiority
in precisely capturing the temporal relationships between ac-
tion semantics to improve the action recognition performance.

E. Analysis of Threshold λ

To analyze the effect of text proposal filtering in handcraft
generation, we evaluate the effectiveness of different values of
the probability threshold λ in filtering out text proposals. Table
IV shows the results of only using the text proposals generated
by handcraft sentence template with different λ, where the
larger λ represents that more text proposals are filtered out.
It can be observed that a smaller λ generally achieves fairly
better performance, which suggests that the increasing text
proposals are helpful to boost the accuracy owing to more
supervision from language. For FineGym, the optimal value
of λ is larger than that for other datasets. The possible reason
is that the videos in the FineGym dataset are professional
actions of formal gymnastics competitions where the scenes
and interactive objects are relatively simple compared to other
datasets, so there are fewer proposals related to frames. In
this case, more proposals with low probability bring more
distractors and hurt the performance.

F. Analysis of different datasets in handcraft generation of text
proposals

To analyze the impact of different datasets in handcraft
generation of text proposals, we use ImageNet-1k that contains
a diverse range of 1000 object categories for comparison.
Specifically, as there are no other available part-level body
motion datasets, we use the body motion concepts from PaS-
taNet and compare the performance of using object categories
from Visual Genome and ImageNet-1k. It can be observed in
Table VI that the text proposals generated by Visual Genome
achieve better performance than that generated by ImageNet-
1k, which indicates that the rich variety of object categories in
Visual Genome enhances the generalization capability of text
proposals.

G. Exploration of the number of input frames

To explore the impact of the number of input video frames,
we compare the performance of our method using different

input frame numbers (8, 16 and 32) on Kinetics, HMDB51 and
Diving48-V2, and the results are reported in Table V. It can be
observed that our method performs best with 16 input frames.
Using 8 frames as input would lack motion information, while
using 32 frames would lead to overfitting on the training set.

H. Evaluation of Text Proposals

Fig. 7 illustrates several examples of video frames with
top 10 important text proposals before and after TMN, where
the importance of text proposals before TMN is determined
by the matching similarity scores after CLIP, and that after
TMN is calculated by the gradient values of the first batch
normalization layer in TMN.

Fig. 7(a) shows an example of the action “stretching arm”
from the Kinetics dataset. It can be seen that the top im-
portant text proposals before TMN are already sufficient for
recognizing the action “stretching arm” because they describe
the motion of “stretch”. However, it is more interesting to
observe that the top text proposals after TMN change to
pay more attention to moving body parts besides the arm
and improve the classification probability. It suggests that the
motion information of multiple body parts is essential to action
recognition, which is successfully captured by TMN.

Fig. 7(b) shows an example of the action “pick” from
the HMDB51 dataset, which further interprets the benefit
of TMN to making correct predictions. This action example
is about a man picking up rubbish from the roadside to
his bag. But before TMN, the shapes of man and bag are
somewhat misleading, making CLIP recognize a motorcycle
in the frames and resulting in high scores for the text proposals
describing “run” or “motorcycle” to make the wrong prediction
of “run”. Our method makes the correct classification of
“pick”, and it can be seen that most important proposals after
TMN are closer to dynamically describing the actions like
“Human’s hand write on the belt.” and “Human’s hand throw
the bag”. This is due to the reliability of TMN and the strong
generalization ability of the collected abundant text proposals.

Fig. 7(c) shows an example of the action “transition flight
from high bar to low bar” on the FineGym dataset. Most
initially generated text proposals before TMN mainly describe
the interaction between “human” and “beam” or “crossbar”. It
is because the “beam” or “crossbar” is really the most obvious
object in video frames, which is easily recognized by CLIP
without temporal modeling. After TMN, it is interesting to
observe that some proposals like “getting your feet together

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2024.3361157

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2024 at 02:21:10 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

1. getting your feet together ham
2. have the chin up
3. with an atomic arm up Anton
4. with your hands here at
5. weight distribution coming off your arms
6. with hands in position
7. Human's hip sit beside the jamb.
8. Human's hand pour into the matchbox.
9. keeping really strong and
10. Human's hand throw out the bookshop.

1. on bars beam
2. good pivot turn at the end of the beam
3. jump to the high bar swing
4. Human's hand raise the crossbar.
5. Human's hand catch with the beam.
6. Human's leg jump with the beam.
7. Human's leg jump with the crossbar. 
8. Human's foot jump with the beam.
9. see a oh big release handspring out
10. in the gymnasts routine

(c) The action "transition flight from high bar to low bar" on the FineGym dataset. 

(a) The action "stretching arm" on the Kinetics dataset. 

1. Human's hip sit beside the hilt.
2. Human's leg is close with the room.
3. Human's hand carry the flesh.
4. Human's arm hug the cross. 
5. Human's hand point with the scope. 
6. Human's shoulder carry the equipment. 
7. reverse it
8. Human's head wear the headband.
9. Human's hip sit in the machine gun.
10.Human's head be close with the gesture.

1. a backbend lay flat push up
2. stretch lunge
3. go push up position
4. performing these simple stretches
5. use this tuck shape for our forward roll
6. push up flat
7. do a one-handed cartwheel
8. start a backbend kickover
9. does the split handstand
10. a cool bit easy gymnastics move

Before TMN After TMNVideo frames

1. Human's hand write on the belt.
2. Human‘s hand throw out the light bulb.
3. Human's head kiss the ground floor.
4. Human's leg walk with the owner.
5. Human's hand throw the bag.
6. Human's hand twist the cup.
7. Human's arm be close to the chip.
8. Human's head be close with the arrow.
9. Human's hand throw out the signal.
10. Human's leg run with the town.

1. Human's leg run to the motorcycle.
2. Human's leg walk with the motorcycle.
3. Human's leg run with the motorcycle.
4. Human's hand throw out the street.
5. Human's leg walk to the motorcycle.
6. Human's hand throw out the road.
7. Human's head blow the road.
8. Human's foot walk to the motorcycle.
9. Human's foot run to the town.
10. Human's foot run to the bus stop.

Text proposals (top 10): Text proposals (top 10):

Action category: stretching arm (0.921) Action category: stretching arm (0.948)

(b) The action "pick" on the HMDB51 dataset. 

Before TMN After TMNVideo frames

Text proposals (top 10): Text proposals (top 10):

Action category:    run (0.403) Action category:    pick (0.706)

Before TMN After TMNVideo frames

Text proposals (top 10): Text proposals (top 10):

Action category: 
transition flight from high bar to low bar (0.59)

Action category:    
transition flight from high bar to low bar (0.975)

Fig. 7. Several examples of actions with top 10 important text proposals before and after the temporal modeling network (TMN) on the Kinetics, HMDB51
and FineGym datasets. The number in the bracket after each action category label represents the probability of classifying the video into the corresponding
category. The most discriminative text proposals for action recognition are marked in green. The incorrectly classified category label is marked in red.

ham” and “with an atomic arm up Anton” become more
important, since they describe the discriminative fine-grained
body movements and thus play a vital role in final recognition.

V. CONCLUSION

We have presented a knowledge prompting method that can
efficiently adapt a pre-trained vision-language model (CLIP)
by leveraging commonsense knowledge from external re-
sources to achieve the few-shot action recognition. To that end,
we have proposed two strategies that are able to generate abun-
dant text proposals as the text input of CLIP. A lightweight
network is also designed for temporal modeling of action
semantics and succeeds in boosting performance. Our method
is simple yet effective, with a strong generalization ability and

low computational cost. Extensive experiments on six action
datasets demonstrate the effectiveness and superiority of our
method on few-shot action recognition.

For some specific actions such as fine-grained hand move-
ments in the SS-V2 dataset, the performance of our method is
not satisfactory due to the limited relevant text proposals. So in
future work, we are going to explore more external resources
to further enrich the knowledge base, and meanwhile introduce
uncertainty learning to improve the text proposal prompting.

VI. ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China (NSFC) under Grant 62072041.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2024.3361157

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2024 at 02:21:10 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

REFERENCES

[1] M. Bishay, G. Zoumpourlis, and I. Patras, “Tarn: Temporal attentive
relation network for few-shot and zero-shot action recognition,” arXiv
preprint arXiv:1907.09021, 2019.

[2] K. Cao, J. Ji, Z. Cao, C.-Y. Chang, and J. C. Niebles, “Few-Shot Video
Classification via Temporal Alignment,” in Computer Vision and Pattern
Recognition, 2020.

[3] L. Zhu and Y. Yang, “Compound Memory Networks for Few-Shot Video
Classification,” in European Conference on Computer Vision, 2018.

[4] H. Zhang, L. Zhang, X. Qi, H. Li, P. H. S. Torr, and P. Koniusz,
“Few-shot Action Recognition with Permutation-invariant Attention,” in
European Conference on Computer Vision, 2020.

[5] T. Perrett, A. Masullo, T. Burghardt, M. Mirmehdi, and D. Damen,
“Temporal-relational crosstransformers for few-shot action recognition,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 475–484.

[6] R. Ben-Ari, M. S. Nacson, O. Azulai, U. Barzelay, and D. Rotman,
“Taen: Temporal aware embedding network for few-shot action recog-
nition,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021, pp. 2786–2794.

[7] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 6299–6308.

[8] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in International
Conference on Machine Learning. PMLR, 2021, pp. 8748–8763.

[9] Y.-L. Li, L. Xu, X. Liu, X. Huang, Y. Xu, S. Wang, H.-S. Fang, Z. Ma,
M. Chen, and C. Lu, “Pastanet: Toward human activity knowledge
engine,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 382–391.

[10] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen,
Y. Kalantidis, L.-J. Li, D. A. Shamma et al., “Visual genome: Connecting
language and vision using crowdsourced dense image annotations,”
International journal of computer vision, vol. 123, no. 1, pp. 32–73,
2017.

[11] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. Le, Y.-H.
Sung, Z. Li, and T. Duerig, “Scaling up visual and vision-language
representation learning with noisy text supervision,” in International
Conference on Machine Learning. PMLR, 2021, pp. 4904–4916.

[12] T. Schick and H. Schütze, “Exploiting cloze questions for few shot
text classification and natural language inference,” arXiv preprint
arXiv:2001.07676, 2020.

[13] K. Zhou, J. Yang, C. C. Loy, and Z. Liu, “Learning to prompt for vision-
language models,” arXiv preprint arXiv:2109.01134, 2021.

[14] J. Cho, J. Lei, H. Tan, and M. Bansal, “Unifying vision-and-language
tasks via text generation,” in International Conference on Machine
Learning. PMLR, 2021, pp. 1931–1942.

[15] M. Tsimpoukelli, J. L. Menick, S. Cabi, S. Eslami, O. Vinyals, and
F. Hill, “Multimodal few-shot learning with frozen language models,”
Advances in Neural Information Processing Systems, vol. 34, pp. 200–
212, 2021.

[16] M. Wang, J. Xing, and Y. Liu, “Actionclip: A new paradigm for video
action recognition,” arXiv preprint arXiv:2109.08472, 2021.

[17] W. Wu, X. Wang, H. Luo, J. Wang, Y. Yang, and W. Ouyang, “Bidi-
rectional cross-modal knowledge exploration for video recognition with
pre-trained vision-language models,” arXiv preprint arXiv:2301.00182,
2022.

[18] S. Li, H. Liu, R. Qian, Y. Li, J. See, M. Fei, X. Yu, and W. Lin, “Ta2n:
two-stage action alignment network for few-shot action recognition,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 2, 2022, pp. 1404–1411.

[19] L. Wu, Y. Wang, H. Yin, M. Wang, and L. Shao, “Few-shot deep
adversarial learning for video-based person re-identification,” IEEE
Transactions on Image Processing, vol. 29, pp. 1233–1245, 2019.

[20] L. Wu, Y. Wang, J. Gao, and X. Li, “Where-and-when to look: Deep
siamese attention networks for video-based person re-identification,”
IEEE Transactions on Multimedia, vol. 21, no. 6, pp. 1412–1424, 2018.

[21] Z. Zhu, L. Wang, S. Guo, and G. Wu, “A closer look at few-shot video
classification: A new baseline and benchmark,” The British Machine
Vision Conference, 2021.

[22] T. Huang, B. Dong, Y. Yang, X. Huang, R. W. Lau, W. Ouyang, and
W. Zuo, “Clip2point: Transfer clip to point cloud classification with
image-depth pre-training,” arXiv preprint arXiv:2210.01055, 2022.

[23] H. Shi, M. Hayat, Y. Wu, and J. Cai, “Proposalclip: Unsupervised
open-category object proposal generation via exploiting clip cues,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 9611–9620.

[24] S. Esmaeilpour, B. Liu, E. Robertson, and L. Shu, “Zero-shot out-of-
distribution detection based on the pretrained model clip,” in Proceed-
ings of the AAAI conference on artificial intelligence, 2022.

[25] S. Y. Gadre, M. Wortsman, G. Ilharco, L. Schmidt, and S. Song,
“Clip on wheels: Zero-shot object navigation as object localization and
exploration,” arXiv preprint arXiv:2203.10421, 2022.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[27] L. A. Ramshaw and M. P. Marcus, “Text chunking using transformation-
based learning,” in Natural language processing using very large cor-
pora. Springer, 1999, pp. 157–176.

[28] L. Zhu and Y. Yang, “Label independent memory for semi-supervised
few-shot video classification,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 44, no. 1, pp. 273–285, 2020.

[29] A. Thatipelli, S. Narayan, S. Khan, R. M. Anwer, F. S. Khan, and
B. Ghanem, “Spatio-temporal relation modeling for few-shot action
recognition,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 19 958–19 967.

[30] J. Wu, T. Zhang, Z. Zhang, F. Wu, and Y. Zhang, “Motion-modulated
temporal fragment alignment network for few-shot action recognition,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 9151–9160.

[31] X. Wang, S. Zhang, Z. Qing, M. Tang, Z. Zuo, C. Gao, R. Jin, and
N. Sang, “Hybrid relation guided set matching for few-shot action
recognition,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 19 948–19 957.

[32] Y. Huang, L. Yang, and Y. Sato, “Compound prototype matching for few-
shot action recognition,” in European Conference on Computer Vision.
Springer, 2022, pp. 351–368.

[33] R. Goyal, S. Ebrahimi Kahou, V. Michalski, J. Materzynska, S. West-
phal, H. Kim, V. Haenel, I. Fruend, P. Yianilos, M. Mueller-Freitag et al.,
“The” something something” video database for learning and evaluat-
ing visual common sense,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 5842–5850.

[34] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb: a
large video database for human motion recognition,” in 2011 Interna-
tional conference on computer vision. IEEE, 2011, pp. 2556–2563.

[35] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human
actions classes from videos in the wild,” arXiv preprint arXiv:1212.0402,
2012.

[36] Y. Li, Y. Li, and N. Vasconcelos, “Resound: Towards action recognition
without representation bias,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 513–528.

[37] D. Shao, Y. Zhao, B. Dai, and D. Lin, “Finegym: A hierarchical video
dataset for fine-grained action understanding,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 2616–2625.

[38] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[39] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks for action recognition in videos,” IEEE
transactions on pattern analysis and machine intelligence, vol. 41,
no. 11, pp. 2740–2755, 2018.

[40] N. Qian, “On the momentum term in gradient descent learning algo-
rithms,” Neural networks, vol. 12, no. 1, pp. 145–151, 1999.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[42] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2024.3361157

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 26,2024 at 02:21:10 UTC from IEEE Xplore.  Restrictions apply. 


