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Abstract

Open-vocabulary video visual relationship detection aims to
extend video visual relationship detection beyond annotated
categories by detecting unseen relationships between objects
in videos. Recent progresses in open-vocabulary perception,
primarily driven by large-scale image-text pre-trained mod-
els like CLIP, have shown remarkable success in recogniz-
ing novel objects and semantic categories. However, directly
applying CLIP-like models to video visual relationship de-
tection encounters significant challenges due to the substan-
tial gap between images and video object relationships. To
address this challenge, we propose a multi-modal prompt-
ing method that adapts CLIP well to open-vocabulary video
visual relationship detection by prompt-tuning on both vi-
sual representation and language input. Specifically, we en-
hance the image encoder of CLIP by using spatio-temporal
visual prompting to capture spatio-temporal contexts, thereby
making it suitable for object-level relationship representa-
tion in videos. Furthermore, we propose vision-guided lan-
guage prompting to leverage CLIP’s comprehensive seman-
tic knowledge for discovering unseen relationship categories,
thus facilitating recognizing novel video relationships. Ex-
tensive experiments on two public datasets, VidVRD and Vi-
dOR, demonstrate the effectiveness of our method, especially
achieving a significant gain of nearly 10% in mAP on novel
relationship categories on the VidVRD dataset.

Introduction
The task of Open-vocabulary Video Visual Relationship De-
tection (Open-VidVRD) (Gao et al. 2023) aims to detect
video relationships between two objects as triplet format
⟨subject, predicate, object⟩ following an open-vocabulary
setting, where the model is learned on base relationship cat-
egories during training and is applied to infer both base and
novel relationship categories during testing. As shown in
Figure 1, the novel categories of ⟨person,wear, hat⟩ and
⟨person, pull, dog⟩, which are absent during training, can
be recognized during testing. Different from the closed-set
setting that does not involve novel categories, the Open-
VidVRD task is more essential and practical for real-world
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Figure 1: Illustration of the Open-VidVRD task. Training is
performed on base categories. Testing is performed on both
base categories and novel categories that are absent in train-
ing.

scenarios characterized by complex and diverse object rela-
tionships.

The recent emergence and advancement of large-scale
pre-trained image-text models (Jia et al. 2021; Pham et al.
2021; Radford et al. 2021) present a promising avenue
for Open-VidVRD, leveraging their learned vision-language
joint embedding space, which contains rich semantic knowl-
edge about objects, scenes, actions, and interactions (Gao
et al. 2022b; Gu et al. 2022; Kuo et al. 2023; Ni et al. 2022;
Weng et al. 2023; Xu et al. 2023). However, directly apply-
ing these models to open-vocabulary video visual relation-
ship detection entails confronting two challenges. The first
challenge pertains to handling the domain gap between im-
ages and video object relationships. Most image-text pre-
trained models are learned on images and their correspond-
ing textual descriptions, which typically encompass the en-
tire image content rather than specific local objects. Conse-
quently, such models lack the ability to capture both tem-
poral context information and object-level details, limiting
their applicability in video object relationship analysis. The
second challenge revolves around leveraging comprehensive
semantic knowledge learned in these pre-trained models to
discover novel video visual relationships.

In this paper, we propose a multi-modal prompting



method for Open-VidVRD1, which prompts the pre-trained
image-text model, i.e., CLIP (Radford et al. 2021), on both
visual and language sides, to improve the alignment between
visual and language representations of relationships. To ad-
dress the first challenge, we propose spatio-temporal visual
prompting to improve CLIP’s ability to capture spatial and
temporal relationships between objects. Starting with using
CLIP to identify and detect novel objects, we then intro-
duce sequential Transformer blocks (Vaswani et al. 2017)
to model the spatial and temporal context among these ob-
jects. Therefore, we adapt CLIP well to the spatio-temporal
object-level relationship domain, ultimately enhancing its
applicability to video visual relationship detection. To ad-
dress the second challenge, we propose vision-guided lan-
guage prompting to exploit CLIP’s comprehensive seman-
tic knowledge for discovering novel relationships. We intro-
duce two kinds of prompts, learnable continuous prompts
and learnable conditional prompts, where the former im-
parts task-specific prior knowledge and the latter dynami-
cally adapts to visual cues. Through the integration of these
two prompts, we not only obtain shared task-specific priors,
but also retain the ability to effectively incorporate novel cat-
egories.

By integrating the spatio-temporal visual prompting and
the vision-guided language prompting, our method success-
fully bridges the domain gap and exploits the semantic
knowledge embedded in CLIP for video visual relation-
ship detection in the open-vocabulary scenario. Extensive
experiments show that our method achieves significant per-
formance improvements over existing methods, especially
achieving nearly 10% mAP gains on the novel relationship
categories on the VidVRD dataset.

To summarize, our main contributions are three-fold: (1)
We propose a multi-modal prompting method for detect-
ing video visual relationships in an open-vocabulary setting,
which prompts CLIP on both the visual and language sides.
(2) We propose spatio-temporal visual prompting to imbue
CLIP with the capabilities of spatial and temporal model-
ing, effectively bridging the gap between images and video
visual relationships. (3) We propose vision-guided language
prompting, which exploits semantic knowledge from CLIP
to discover novel visual relationships in videos.

Related Work
Open-vocabulary Visual Relationship Detection. The
task of visual relationship detection in images (Lu et al.
2016) or videos (Shang et al. 2017), involving the classifi-
cation and localization of relationship triplets, has become a
hot topic in the field of computer vision (Tang et al. 2020;
Li et al. 2022b; Cong, Yang, and Rosenhahn 2023; Zheng,
Chen, and Jin 2022; Xu et al. 2022; Chen, Xiao, and Chen
2023). This field has also explored the concept of zero-shot
detection (Shang et al. 2021), where all object and relation-
ship categories are seen during training, but some certain
triplet combinations remain unseen during test.

1Codes are at https://github.com/wangyongqi558/MMP OV
VidVRD

In recent years, open-vocabulary visual relationship de-
tection (He et al. 2022; Gao et al. 2023) has emerged,
aiming to recognize visual relationships involving objects
or predicates that are completely unseen in the training
data. SVRP (He et al. 2022) adopts a two-step method
for open-vocabulary visual relationship detection, includ-
ing visual-relationship pre-training and prompt-based fine-
tuning. However, this method caters to relationships within
static images, but not within videos. In contrast, Repro (Gao
et al. 2023) pioneers the open-vocabulary video visual re-
lationship detection by leveraging the video-language pre-
training model ALPro (Li et al. 2022a), sidestepping the ne-
cessity of training from scratch. However, Repro predom-
inantly aligns the embedding space of video relationships
from a linguistic perspective, ignoring the inherent spatial
and temporal contextual dependencies in object relation-
ships. The multi-modal prompting method proposed in this
paper adapts the more broadly applicable image-text pre-
trained CLIP on both visual and language sides to cap-
ture the spatio-temporal contexts of relationships and exploit
prior semantic knowledge of novel relationships.
Prompting CLIP. Recently, visual-language pre-trained
models (Radford et al. 2021; Alayrac et al. 2022; Li
et al. 2020; Luo et al. 2020) have demonstrated significant
progress in many downstream vision-language tasks. As one
of the most successful visual-language pre-training models,
CLIP (Radford et al. 2021), is extensively pre-trained using
400 million image-text pairs from the Internet, resulting in
a visual-language embedding space with comprehensive se-
mantic knowledge.

Various techniques for prompt learning (Gu et al. 2022;
Ding, Wang, and Tu 2022; Xu et al. 2023; Kuo et al. 2023;
Gao et al. 2022b; Wang, Xing, and Liu 2021) have emerged
to facilitate the efficient transfer of knowledge from CLIP
to the downstream tasks. These tasks range from few/zero-
shot classification (Pham et al. 2021; Zhou et al. 2022),
open-vocabulary recognition and detection (Gu et al. 2022;
Du et al. 2022; Ding, Wang, and Tu 2022; Ma et al. 2022;
Wang et al. 2022; Kuo et al. 2023), to video-related appli-
cations (Xu et al. 2021; Ju et al. 2022; Wang, Xing, and Liu
2021; Ni et al. 2022; Weng et al. 2023). However, these ap-
proaches prompt CLIP in a single modality, either visual or
language, resulting in sub-optimal performance.

A method closely related to our method is MaPLe (Khat-
tak et al. 2023), which prompts CLIP in both vision and
language to enhance the alignment between visual and lan-
guage representations. It is worth noting that MaPLe pri-
marily focuses on image recognition tasks. In contrast, our
method is tailored for video visual relationship detection,
which is more challenging than image domain tasks.

Our Method
Overview
Video Visual Relationship Detection (VidVRD) aims to de-
tect instances of visual relationships of interest in a video,
where a visual relationship instance is represented by a
triplet ⟨subject, predicate, object⟩ with the trajectories of
subject and object. For the Open-vocabulary Video Visual
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Figure 2: Overview of proposed method.

Relationship Detection (Open-VidVRD), the categories of
objects and predicates are divided into base and novel splits,
i.e., base objects (CO

b ), novel objects (CO
n ), base predicate

(CP
b ), and novel predicate (CP

n ). Only base object and pred-
icate categories are used in the training stage, and all cate-
gories are used in the testing stage.

To address the Open-VidVRD task, we propose a multi-
modal prompting method to prompt the well-known CLIP
model on both visual representation and language input.
Our method consists of three main components: an open-
vocabulary object tracklet detection module for both base
and novel objects, a spatio-temporal prompting module to
enable the spatio-temporal modeling of object relationships,
and a language prompting module with both learnable con-
tinuous prompts and learnable conditional prompts. The
overview of our method is shown in Figure 2.

Open-vocabulary Object Tracklet Detection
We use a pre-trained tracklet detector (Gao et al. 2022a)
to obtain N class-agnostic visual object tracklets T =
{T i}Ni=1, T i = {Bt}Tt=1, where T i are visual object trajec-
tories with T frames and Bt is the bounding box of object
in frame t. We classify each tracklet using CLIP. Specifi-
cally, we extract the visual representations of cropped ob-
ject regions corresponding to detected bounding boxes us-
ing CLIP’s image encoder and average the features along
temporal axis of the tracklet. Meanwhile, we extract text
embeddings for all object categories by feeding handcrafted
prompts, i.e., “a photo of [CLS]” into the text encoder of
CLIP, where [CLS] can be replaced with the names of ob-
jects. Then, we assign each tracklet an object category label
c by its maximum scores within all objects:

p(c) =
exp(cos(vi, l̂c)/τ)∑

c′∈Co
b∪Co

n
exp(cos(vi, l̂c)/τ)

, (1)

where c ∈ Co
b ∪ Co

n , τ is a temperature parameter, and
cos(vi, l̂c) is the cosine similarity between the visual fea-

tures vi of the i-th object trajectory and the text embedding
features l̂c of the object category c.

Spatio-temporal Visual Prompting
Pre-trained image-text models such as CLIP are typically
trained using images and their associated textual descrip-
tions. These descriptions usually encapsulate the entire con-
tent of the image, rather than focusing on individual objects.
Therefore, these models lack detailed object-level informa-
tion and temporal context. To address the disparity in rela-
tionships between the image and video domains, we intro-
duce the spatio-temporal visual prompting, which is inte-
grated into the image encoding process of CLIP, to bridge
the domain gap and enhance the CLIP’s ability to capture
both spatial and temporal visual relationships in videos.

For each pair of tracklet, i.e., a subject tracklet and an ob-
ject tracklet, we first set the regions outside the bounding
boxes of the tracklets to 0, resulting in four masked frames:
frames corresponding to the subject, object, their union, and
background (whole image). And then, we extract their fea-
tures using CLIP and capture their spatio-temporal relation-
ships by standard Transformer Blocks. To reduce the compu-
tational complexity, we decouple the spatio-temporal mod-
eling into separate and successive modules, namely spatial
modeling and temporal modeling, as illustrated in Figure 3.

Spatial Modeling. Spatial relationships between objects
are typically defined by their positional orientations, such as
being in front of or above each other. Therefore, spatial mod-
eling requires combining four key elements: features of sub-
ject region, features of object region, features encompassing
their union region (i.e., the smallest area covering subject
and object), and features representing the backgrounds (i.e.,
the whole image). This process involves modeling interac-
tions between objects and their backgrounds to enhance ob-
ject features, thus capturing the spatial context.

Specifically, given the masked frames of subject, object,
their union and background, we first extract their features by
the image encoder of CLIP, denoted by vk, k ∈ {s, o, u, b}.
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Figure 3: Overview of spatial modeling and temporal modeling. bk, rk, k ∈ {s, o, u, b} denotes the spatial position embedding
and role embedding corresponding to subject, object, their union, and background, respectively. tt is the temporal embedding
of t-th frame.

Note that the same spatial modeling is used across different
frames, thus we omit the frame index here for simplify. And
then we add two types of learnable embedding: positional
embedding bk, k ∈ {s, o, u, b}, which are learned related to
the normalized bounding box, and role embedding rk, k ∈
{s, o, u, b}. These two types of embeddings are learned and
shared over all video frames, respectively. Finally, we update
the visual features by

(v̇s, v̇o, v̇u, v̇b) = STrans(Is, Io, Iu, Ib), (2)

where Ik = vk + bk + rk, k ∈ {s, o, u, b} and STrans(·)
denotes the spatial Transformer blocks.

Temporal Modeling. Temporal relationships of objects
are time-dependent, such as toward or away, so the inputs
of temporal modeling contain two items: visual features and
temporal embeddings. Note that the same temporal mod-
eling is used for different roles, i.e., subject, object, their
union, and background. Through the exploration of dynamic
state transformations, visual features are systematically up-
dated.

Specifically, given the spatial encoded visual features v̇ =
{v̇s

t , v̇
o
t , v̇

u
t , v̇

b
t}Tt=0, we collect each role features separately

from all frames as v̇k = {v̇k
t }Tt=0, k ∈ {s, o, u, b}, and add

temporal embedding tt, which are learned related to frame t
and shared over all video frames. For each region, the visual
features are then updated by

v̈k = {v̈k
t }Tt=0 = TTrans(İ

k

0 , İ
k

1 , · · · , İ
k

T ), (3)

where İ
k

t = v̇k
t + tt, and TTrans(·) denotes the temporal

Transformer blocks. The updated features are then reorga-
nized by their frame indexes for the next layer.

Vision-guided Language Prompting
The main goal of the Open-VidVRD task is to discover novel
video visual relationships. To achieve this goal, considering
both task-related prior knowledge and visual-related prior
knowledge, we propose vision-guided language prompting
to leverage the rich semantic knowledge stored in CLIP

by combining learnable continuous language prompts and
learnable conditional language prompts.

Learnable Continuous Language Prompts. For each
predicate category [CLS], [CLS] ∈ CP

b when training
and [CLS] ∈ CP

n ∪ CP
b when testing, Nς -token language

prompts corresponding to each of the four roles (i.e., sub-
ject, object, union, and background) are initialized as ςk =
[ςk1 , ς

k
2 , · · · , ςkNς

], k ∈ {s, o, u, b} and are learned by gradi-
ent backpropagation.

Learnable Conditional Language Prompts. For each
predicate category [CLS], [CLS] ∈ CP

b when training and
[CLS] ∈ CP

n ∪ CP
b when testing, Nζ-token learnable con-

ditional language prompts corresponding to each of the four
roles (subject, object, union, and background) are learned by
taking into account their visual features:

ζk = [ζk
1 , ζ

k
2 , · · · , ζ

k
Nζ

] = φk(v̈
k), (4)

where φk(·) denotes the vision-guided prompting network,
consisting of two linear layers.

Learnable Vision-guided Language Prompts. We con-
catenate the token of learnable continuous language prompts
and token of learnable conditional language prompts inter-
laced, and then insert the [CLS] token of predicate cate-
gories into the later middle (75% of the length) of token
sequence, resulting in the final language prompts ℓkCLS =[
ςk1 , ζ

k
1 , ς

k
2 , ζ

k
2 , · · · ,CLS, · · · , ςkNς

, ζk
Nζ

]
, k ∈ {s, o, u, b}.

The final language features of category c corresponding
to each visual region are generated by

lkc = π(ℓkc ), (5)
where π(·) is the text encoder of CLIP.

Training Loss
The training loss of our method consists of three parts: a
relationship contrastive loss Lrel, an object contrastive loss
Lobj , and an interaction loss Lint, as shown in Figure 2. The
overall objective loss function is given by

L = Lrel + αLobj + βLint. (6)



Split Method DET Trajectory GT Trajectory
mAP R@50 R@100 mAP R@50 R@100

Novel

ALPro (Li et al. 2022a) 1.05 3.14 4.62 4.09 9.42 10.41
CLIP (Radford et al. 2021) 2.88 3.80 4.96 4.54 7.27 11.74

VidVRD-II (Shang et al. 2021) 3.57 8.59 12.39 7.35 18.84 26.44
RePro (Gao et al. 2023) 6.10 13.38 16.52 12.74 25.12 33.88

Ours 15.99 16.69 18.68 21.14 30.41 37.85

All

ALPro (Li et al. 2022a) 3.20 2.62 3.18 4.97 4.50 5.79
CLIP (Radford et al. 2021) 5.03 3.04 3.68 6.49 5.21 6.54

VidVRD-II (Shang et al. 2021) 12.74 9.90 12.59 19.73 18.17 24.90
RePro (Gao et al. 2023) 21.33 12.92 15.94 34.90 25.50 32.49

Ours 27.06 16.71 19.61 38.08 30.47 37.46

Table 1: Results of different methods on the VidVRD dataset.“DET” and “GT” denote using detected trajectory and ground-
truth trajectory, respectively.

where α and β represent balance factors.

Relationship Contrastive Loss. Given the visual repre-
sentations v̈k and the language representations lkc , the pre-
diction score of the relationship category c is calculated by

ŷrelc = σ(cos(ψ(ṽ), l̃c)) (7)

where ṽ = ||v̈s, v̈o, v̈u, v̈b||; l̃c = ||lsc, l
o
c , l

u
c , l

b
c||; || · || de-

notes concatenation; σ(·) is the sigmoid function; cos(·, ·) is
the cosine similarity and ψ(·) denotes the relationship map-
ping layer in Figure 2. Then the relationship contrastive loss
is formulated by using the binary cross-entropy loss (BCE):

Lrel = 1/|CP
b | ·

∑
c∈CP

b

BCE(ŷrelc , yrelc ), (8)

where yrelc = 1 when the class c is the ground-truth predi-
cate category, otherwise yrelc = 0.

Object Contrastive Loss. To avoid the visual features
drift caused by the proposed sptio-temporal prompting, we
introduce an object contrastive loss to enforce the spatial
encoded object features to have the ability to distinguish
each other as the original CLIP. Specifically, after the spa-
tial modeling, we collect subject and object features from
all frames and average them as v̄k = avg({ϕ(v̇k

t )}Tt=0),
k ∈ {s, o} and ϕ(·) denotes the object mapping layer in
Figure 2. Meanwhile, we extract the text embeddings for
all subject or object categories by feeding the handcrafted
prompts (i.e.,“a photo of [CLS]”) into the text encoder of
CLIP, where [CLS] can be replaced with the names of sub-
jects or objects. The similarity between the visual feature
and the language features of category c is calculated by
ŷkc = cos(v̄k, l̂c), k ∈ {s, o}. Finally, the object contrastive
loss is computed over all object categories using the cross-
entropy loss (CE):

Lobj = CE(ŷs, ys) + CE(ŷo, yo), (9)

where ŷs is the predicted subject similarity between vi-
sual features and language features of base object categories
(CO

b ), and ŷo is the corresponding predicted object similar-
ity. ys and yo denote the ground-truth category labels of the
subject and object, respectively.

Interaction Loss. There may be no annotated relation-
ships between some subjects and objects, that is, there is no
interaction. For each pair of subject and object, if there are
any relationship categories between them in video frame t,
we set the ground-truth interaction by yintt = 1, otherwise
yintt = 0. To learn this weak interaction, we concatenate all
the features in frame t and predict the interaction probability
by ŷintt = ψ(||v̈s

t , v̈
o
t , v̈

u
t , v̈

b
t ||), where ψ(·) denotes the re-

lationship indication layer in Figure 2. The interaction loss
is then computed using the binary cross-entropy loss (BCE):

Lint = 1/T ·
∑T

t=1
BCE(ŷintt , yintt ). (10)

Experiment
Datasets and Evaluation Metrics
Datasets. We evaluate our method on the VidVRD (Shang
et al. 2017) and VidOR (Shang et al. 2019) datasets. The
VidVRD dataset contains 1000 videos, 800 videos for train-
ing and 200 for testing, covering 35 object categories and
132 predicate categories. The VidOR dataset contains 10000
videos, 7000 videos for training, 835 videos for validation,
and 2165 videos for testing, covering 80 object categories
and 50 predicate categories.

Evaluation Settings. For the open-vocabulary evaluation,
the base and novel categories are selected based on fre-
quency. Following Repro (Gao et al. 2023), we choose the
common object and predicate categories as base categories
and the rare ones as novel categories. Training is performed
on base categories. Test is performed under two settings:
(1) Novel-split evaluation involves all object categories and
novel predicate categories; (2) All-split evaluation involves
all object categories and all predicate categories, which is
a standard evaluation. Note that the test is performed on
both the test set of VidVRD and the validation set of Vi-
dOR (the annotations of test set of VidOR are not available).
To remove the impact of inaccurately detected trajectories,
we also evaluate the methods using ground-truth trajectories,
focusing on relationship detection with accurately detected
objects.



Split Method mAP R@50 R@100

Novel

ALPro - 8.35 9.79
CLIP 1.08 5.48 7.20

VidVRD-II - 4.32 4.89
RePro - 7.20 8.35
Ours 3.58 9.22 11.53

All

ALPro - 2.61 3.66
CLIP 1.29 1.71 3.13

VidVRD-II - 24.81 34.11
RePro - 27.11 35.76
Ours 38.52 33.44 43.80

Table 2: Results of different methods using ground-truth tra-
jectory on the VidOR dataset.

Vis Lan Novel All AVGDET GT DET GT
5.03 5.23 20.61 27.14 14.50

✓ 11.04 16.83 26.35 37.10 22.83
✓ 12.33 17.98 26.94 36.79 23.51

✓ ✓ 15.99 21.14 27.06 38.08 25.57

Table 3: Performance (mAP) of ablation study for multi-
modal prompting on the VidVRD dataset. “Vis” and “Lan”
denote visual prompting and language prompting, respec-
tively.

Metrics. We use mean Average Precision (mAP) and Re-
call@K (R@K) with K=50,100 for evaluation. The detected
triplet is considered correct if it matches a triplet in the
ground-truth and the IoU between them is greater than a
threshold (i.e., 0.5).

Implementation Details
For all experiments, video frames are sampled every 30
frames. We adopt the ViT-B/16 version of CLIP while keep-
ing the parameters fixed. The number of Transformer blocks
of spatio-temporal visual prompting is set to 1 and 2 for the
VidVRD dataset and the VidOR dataset, respectively. The
head number of multi-head self-attention of Transformer
blocks is set to 8, and the dropout rate is set to 0.1. For
language prompting, we set the number of tokens for both
learnable continuous prompts and conditional prompts to 8.
The [CLS] token is positioned at 75% of the token length.
For optimization, we use the AdamW (Loshchilov and Hut-
ter 2019) algorithm with an initial learning rate of 0.001. A
multi-step decay schedule is applied at epochs 15, 20, and
25, reducing the learning rate by a factor of 0.1 each time.
The batch size is set to 32.

Comparison with Existing Methods
We conduct a comprehensive comparison of our method
with the state-of-the-art methods, including RePro (Gao
et al. 2023), VidVRD-II (Shang et al. 2021), and the pre-
trained models ALPro (Li et al. 2022a) and CLIP.

The comparison results on the VidVRD dataset are shown
in Table 1. It is interesting to observe that our method

Spa Tem Novel All AVGDET GT DET GT
12.33 17.98 26.94 36.79 23.51

✓ 13.92 17.54 26.79 36.73 23.75
✓ 9.10 12.41 23.27 31.39 19.07

✓ ✓ 15.99 21.14 27.06 38.08 25.57

Table 4: Performance (mAP) of ablation study for the spatio-
temporal visual prompting on the VidVRD dataset. Note
that we add linear layers to keep similar amount parameters
when a module is absent. “Spa” and “Tem” denote spatial
modeling and temporal modeling, respectively.

Variants Novel All AVGDET GT DET GT
Manual 11.04 16.83 26.35 37.10 22.83

Continuous 14.21 18.21 27.27 36.94 24.16
Conditional 15.29 21.88 25.85 36.44 24.87

Ours 15.99 21.14 27.06 38.08 25.57

Table 5: Performance (mAP) of ablation study for the lan-
guage prompting on the VidVRD dataset.

achieves the best performance in terms of all evaluation
metrics, and specifically achieves nearly 10% improve-
ment in mAP using both detected trajectories (denoted as
“DET”) and ground-truth trajectories (denoted as “GT”) in
the “Novel” split. This clearly validates the superiority of the
proposed multi-modal prompting method in Open-VidVRD.

The comparison results on the VidOR dataset are shown
in Table 2. Since the existing methods only provide the re-
sults using ground-truth trajectory on the VidOR dataset,
we only report the results using ground-truth trajectory for
comparison. Our method outperforms the other methods by
0.87% and 1.74% on R@50 and R@100, respectively, in the
“Novel” split. Moreover, our method achieves gains of 6.8%
and 8.04% on R@50 and R@100, respectively, in the “All”
split.

Abaltion Studies
We perform in-depth ablation studies on the VidVRD dataset
to evaluate each component of our method.

Effectiveness of multi-modal prompting. To evaluate the
multi-modal prompting, we replace the visual prompting
(denoted as “Vis”) with linear layers and replace the lan-
guage prompting (denoted as “Lan”) with handcraft lan-
guage prompting. The results are shown in Table 3. The con-
sistent improvements in the “Novel” split and the “All” split
demonstrate the effectiveness of the proposed visual promot-
ing and language prompting.

Effectiveness of spatio-temporal visual prompting. To
evaluate the components of the spatio-temporal visual
prompting, we replace the spatial modeling module (de-
noted as “Spa”) or the temporal modeling module (denoted
as “Tem”) with linear layers. From the results shown in Ta-
ble 4, the average gain in mAP exceeds 2% when perform-
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Figure 4: Effectiveness of tokens of vision-guided languge
prompts on the VidVRD dataset. The x-axis represents the
percentage of tokens from conditional prompts, from 0 (all
tokens are from learnable continuous prompts) to 100% (all
tokens are from learnable conditional prompts), and differ-
ent colors denote different lengths.

ing both spatial and temporal modeling. Furthermore, we
observe that the performance drops significantly when only
temporal modeling is performed without incorporating spa-
tial modeling. This is in line with expectations, as it is diffi-
cult to recognize object relationships based only on the dy-
namic state changes of individual objects.

Effectiveness of vision-guided language prompting. To
evaluate the effectiveness of the vision-guided language
prompting, we design three variants of our method for com-
parison: (1) “Manual” involves pre-defined templates for
subjects (i.e., “An image of a person or object [CLS] some-
thing”), objects (i.e., “An image of something [CLS] a per-
son or object”), unions and backgrounds (i.e., “An image
of the visual relationship [CLS] between two entities”); (2)
“Continuous” involves learnable continuous prompts; (3)
“Conditional” tailors all prompts to input visual features.

From the results shown in Table 5, it is obvious that the
proposed viual-guided language prompting (“Ours”) outper-
forms the other variants on average. Specifically, an impres-
sive improvement of nearly 5% is achieved in the “Novel”
split using the detected trajectories. We also observe that
the learnable prompts, including the learnable continuous
prompts and the learnable conditional prompts, generally
achieve better results than the manually designed prompts.

Effectiveness of tokens of languge prompting. We ana-
lyze the effectiveness of tokens of vision-guided language
prompts by alternately placing tokens of learnable contin-
uous prompts and conditional prompts and inserting the
[CLS] token at the 75% position of the length, as shown
in Figure 4. We observe that the performance initially as-
cends and then declines with the increasing token number.
And along with the increasing percentages of tokens from
learnable conditional prompts, the results first increase and
then become unstable. The best performance surfaces when
the token number is 16, and half of the tokens are from
learnable conditional prompts. These observations high-
light the importance of combining task-specific knowledge
and visual cues, further validating the effectiveness of our
vision-guided prompting on combining learnable continu-
ous prompts and learnable conditional prompts.

(a) Feature distributions of base predicate categories.

fly_with jump_beneath follow sit_above play
ride left touch stop_behind walk_with

(b) Feature distributions of novel predicate categories.

fly_away sit_next_to drive walk_past stand_above
swim_behind above creep_toward move_past stop_next_to

CLIP Ours

OursCLIP

Figure 5: Qualitative results of visual feature (union region
of subject and object) distributions by T-SNE.

Qualitative Analysis

We visualize the feature distributions of randomly selected
10 predicate categories by projecting the features of the
union regions onto a 2D plane using T-SNE (Hinton and
Roweis 2002), to demonstrate how well our spatio-temporal
visual prompting method adapts the image encoder of CLIP.
As shown in Figure 5, features of our method (the right parts
of Figure 5 (a) , (b)) within the same categories are pulled
closer while features across different categories are pushed
further apart, improving the discrimination on both base
and novel categories. These qualitative results further ver-
ify the effectiveness of our spatio-temporal visual prompting
method.

Conclusion

We have presented a multi-modal prompting method for
open-vocabulary video visual relationship detection. By
introducing spatio-temporal visual prompting and vision-
guided language prompting to leverage the large-scale pre-
trained image-text model, our method demonstrates remark-
able potential in bridging the domain gap between image
and video relationships and discovering novel objects and
relationships. Extensive experiments conducted on public
datasets show the superiority of our method, substantiated
by a notable gain of performance on novel relationship cate-
gories while keeping the performance of base categories. A
limitation of our method is the dependence on a pre-trained
trajectory detector, so investigating an end-to-end pipeline to
alleviate this dependency is an interesting avenue for future
research.
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