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ABSTRACT
Frame-supervised language-driven action localization aims to lo-
calize action boundaries in untrimmed videos corresponding to the
input natural language query, with only a single frame annotation
within the target action in training. This task is challenging due to
the absence of complete and accurate annotation of action bound-
aries, hindering visual-language alignment and action boundary
prediction. To address this challenge, we propose a novel method
that introduces distribution functions to model both the probability
of action frame and that of boundary frame. Specifically, we assign
each video frame the probability of being the action frame based on
the estimated shape parameters of the distribution function, serv-
ing as a foreground pseudo-label that guides cross-modal feature
learning. Moreover, we model the probabilities of start frame and
end frame of the target action using different distribution functions,
and then estimate the probability of each action candidate being
a positive candidate based on its start and end boundaries, which
facilitates predicting action boundaries by exploring more positive
terms in training. Experiments on two benchmark datasets demon-
strate that our method outperforms existing methods, achieving a
gain of more than 10% of 𝑅1@𝜇 ≥ 0.5 on the challenging TACoS
dataset. These results emphasize the significance of generating
pseudo labels with appropriate probabilities via distribution func-
tions to address the challenge of frame-supervised language-driven
action localization. 1

CCS CONCEPTS
• Information systems→ Novelty in information retrieval;
Video search.
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1 INTRODUCTION
Language-driven action localization has drawn increasing atten-
tion in recent years, which aims to locate the action interval in an
untrimmed video that is semantically relevant to a language query.
This task, also known as video moment retrieval [7, 34, 39, 46] or
temporal sentence grounding [16, 18, 44], is a fundamental prob-
lem in video understanding and multi-modal information retrieval,
which involves not only cross-modal alignment but also action
boundary localization. It has been widely applied in various sce-
narios, such as content-based video search and automatic video
editing.

Previous methods [1, 6, 11, 31, 37, 43] have achieved remarkable
success in the fully-supervised setting that requires annotating both
the start and end timestamps of the target action corresponding to a
given language query, as shown in Figure 1 (a). However, the frame
annotation paradigm is time-consuming because annotators need
to review videos multiple times to accurately identify action bound-
aries. Consequently, recent methods [13, 25, 33, 38, 50] explore the
weakly-supervised setting where only language-video pair annota-
tions are provided, resulting in less annotation burden but lower
performance, as shown in Figure 1 (b). The frame-supervised set-
ting, first proposed in [4, 42], uses single-frame annotation within
the target action, achieving a good balance between annotation
cost and performance, as shown in Figure 1 (c). However, incom-
plete annotations still hinder visual-language alignment and action
boundary prediction.

In this paper, we propose a newmethod tomodel the probabilities
of action frames and boundary frames by introducing distribution
functions. By exploiting the temporal consistency between video
frames and properties of probability distribution functions, we ex-
tend annotated frames to other frames with different probabilities.
This enables the generation of frame-wise pseudo-labels of action
frames, which is useful for learning video-language alignment. We

https://github.com/shuoyang129/Distribution-Based-frame-supervised-Language-driven-Action-Localization
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Figure 1: Illustration of different settings of language-driven
action localization. Given an input language query and an
input video, (a) the fully-supervised setting provides the start-
ing and ending boundaries of the target action, (b) theweakly-
supervised setting provides no additional labels, and (c) the
frame-supervised setting gives a frame annotation within
the target action.

also model the probabilities of a video frame as the start and end of
the target action via different distribution functions. And by multi-
plying the start and end probabilities, we can obtain the probability
of an action candidate being a positive target action segment. By
doing so, all action candidates can be treated as positive action can-
didates with varying probabilities, enabling the exploration of all
possible positive action candidates with appropriate probabilities
and thus improving the accuracy of boundary estimation.

Specifically, we assign each video frame a probability of being
the action frame, which is highest at the annotated frame and grad-
ually decreases to a minimum near the boundary. To model this
probability, we estimate the parameters of a specific distribution
based on the visual similarity and temporal distance between the
video frames and the annotated frame. In particular, we use the
various asymmetrical probability curves of Beta distribution to han-
dle the situations in which only few annotated frames are located
at the center of the action segments. Using the resulting probabil-
ity as a soft label for each action frame, we can optimize a binary
cross-entropy loss that forces the visual feature to be similar to the
language query feature with appropriate loss weights.

Furthermore, we introduce another distribution function tomodel
the probability of each video frame being the start or end bound-
ary of the target action. In our method, the highest probabilities
are assigned to the boundaries of an action candidate, or so-called
proposal, that is closest to the language query in the feature embed-
ding space, while the annotated frame is less likely to be an action
boundary, as illustrated in Figure 4. We combine the probabilities
of the starting and ending boundaries to give each action candidate
a probability of being the target action segment. This helps us iden-
tify more positive action candidates with reasonable probabilities,
thereby facilitating the localization of action boundaries.

The main contributions of this paper are as follows:

• We propose a novel method that uses distribution functions,
such as the Beta distribution, to generate a probability for
each video frame being the action frame, serving as a pseudo-
label to enhance the cross-modal feature learning.

• We propose to use different distribution functions to model
the probabilities of the start frame and end frame of the
target action, so as to explore more positive action candidates
during training, thus facilitating the localization of action
boundaries.

• Experiments on two benchmark datasets demonstrate that
our method outperforms existing methods, especially achiev-
ing a gain of more than 10% of 𝑅1@𝜇 ≥ 0.5 on the challeng-
ing TACoS dataset.

2 RELATEDWORK
Current language-driven action localization settings can be roughly
divided into three types: fully-supervised, weakly-supervised and
frame-supervised.

Fully-supervised language-driven action localization re-
quires the annotation of start and end timestamps for each query
during training. Existing methods of this setting can be broadly
categorized into two groups: proposal-based and proposal-free. In
the proposal-based methods, candidate proposals are first generated
using sliding windows, proposal generation, or anchor-based meth-
ods, and are then ranked based on queries. For instance, CTRL [6],
MCN [1], MARN [19], HVSARN [20] and TSTNet [40] generate pro-
posals of varying lengths through sliding windows. 2D-TAN [48],
MGPN [32], HLN [5] and VDI [22] generate proposals by using
a two-dimensional feature map that model the relationships be-
tween segments of varying durations. The proposal-free methods
directly predict the start and end boundaries of the target action
on sequences of fine-grained video clips. According to the format
of moment boundaries, proposal-free methods are categorized into
span-based and regression-based methods. VSLNet [47], SLP [14]
and D-TSG [17] directly predict the probability of each video snip-
pet or frame being the start and end positions of the target action.
TVP [49] and MGSL-Net [15] calculates a time pair and compares
it with ground truth for model optimization.

Weakly-supervised language-driven action localization
only requires the annotation of pairs of video and query instead of
the annotation of start and end times, thus reducing the high an-
notation cost. Existing weakly-supervised language-driven action
localization methods can be broadly classified into two categories:
multi-instance learning and reconstruction-based methods. For in-
stance, TGA [25] regards the video and its corresponding query de-
scriptions as positive pairs, while considering the video with other
queries and the query with other videos as negative pairs. This
method learns video-level visual-text alignment by maximizing the
matching scores of positive samples while minimizing the scores
of negative samples. SAN [38] introduces a multi-scale Siamese
module that progressively narrows the semantic gap between the
visual and textual modalities. RTBPN [50] uses a language-aware
filter to generate an enhanced video stream and a suppressed video
stream, which are used to generate positive proposals and negative
proposals for sufficient confrontment, separately.
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Frame-supervision is a setting that aims to strike a balance
between annotation cost and performance, which has been applied
to various computer vision tasks. Bearman et al. [2] introduce the
concept of frame supervision for semantic segmentation. Mettes
et al. [24] extend the use of frame supervision to spatio-temporal
action localization in videos. In recent years, Ma et al. [23] pro-
pose a SF-Net model for video temporal action localization by using
single-frame supervision. Li et al. [12] develop a temporal action seg-
mentation model that requires only timestamp annotations. More
recently, some studies investigated the implementation of single-
frame annotation for language-driven action localization. Cui et
al. [4] originally introduce the concept of frame supervision for
language-driven action localization, which uses the Gaussian distri-
bution to model the probability distribution of foreground frames.
Meanwhile, Xu et al. [42] employ a combination of Language Acti-
vation Sequence (LAS) and given frame supervision to enhance the
model’s ability in language-driven action localization.

3 OUR METHOD
3.1 Problem Definition
Given an untrimmed video and a language query, the task of frame-
supervised language-driven action localization aims to localize the
target action boundaries (𝜏𝑠 , 𝜏𝑒 ) with an additional frame annota-
tion 𝑡𝑝 in the training stage, where 𝜏𝑠 ≤ 𝑡𝑝 ≤ 𝜏𝑒 , and 𝜏𝑠 and 𝜏𝑒
represent the start and end frames of the action corresponding to
the language query, respectively. Note that in the inference stage,
the frame annotation is not available.

3.2 Baseline Model
Due to the lack of boundary annotation, we propose a baseline
model of frame-supervised language-driven action localization,
which follows an multiple-instance learning (MIL) strategy and
consists of three components: a video encoder, a language encoder,
and a cross-modal interaction module, as shown in Figure 2.
Video Encoder. We first split the given video into a sequence
of non-overlap clips with a fixed length (e.g., 16 frames) and ex-
tract visual features of each clip by a pre-trained 3D-CNN [3, 35].
Then we uniformly sample 𝑇 features and project them into 𝑑-
dimensional representations using a fully-connected (FC) layer.
Finally, we encode temporal relationships using a standard Trans-
former block [36] that consists of multi-head self-attention, layer
normalization, residual connection, and feed-forward network. The
process of video encoding is represented by

𝑽 ′ = 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 (𝐹𝐶 (Uniform-Sample(3D-CNN(𝑉 )))). (1)

Language Encoder. Given an input language query, we first ini-
tialize its word features using the GloVe embedding [28] and then
project their dimension to 𝑑 by a fully-connected (FC) layer, fol-
lowed by a three-layer bi-directional Gated Recurrent Unit (GRU)
to learn the relationships of words:

𝑸′ = Bi-GRU(𝐹𝐶 (𝐺𝑙𝑜𝑉𝑒 (𝑄))) . (2)

Cross-modal Interaction Module. After encoding the video and
language query, we adopt two cross-attention modules for the cross-
modal interaction, each by regarding one modality as the query
and the other as key and value, followed by a layer normalization,

a residual connection and a feed-forward network:
𝑭 𝑣 = 𝐹𝐹𝑁 (𝐿𝑁 (𝑀𝑆𝐴(𝐹𝐶𝑄 (𝑽 ′), 𝐹𝐶𝐾 (𝑸′), 𝐹𝐶𝑉 (𝑸′)) + 𝑽 ′)),
𝑭𝑞 = 𝐹𝐹𝑁 (𝐿𝑁 (𝑀𝑆𝐴(𝐹𝐶𝑄 (𝑸′), 𝐹𝐶𝐾 (𝑽 ′), 𝐹𝐶𝑉 (𝑽 ′)) + 𝑸′)),

(3)
where 𝑀𝑆𝐴 is the multi-head self-attention module[36]; 𝐿𝑁 de-
notes layer normalization; 𝐹𝐶 𝑗 (·) denotes fully connected layer,
𝑗 ∈ {𝑄,𝐾,𝑉 }; 𝐹𝐹𝑁 (·) is a feed-forward network.
Training loss. For the learned video features 𝑭 𝑣 , we generate ac-
tion candidates 𝑃 = {𝑃1, 𝑃2, · · · , 𝑃𝑁 }, also known as proposals, by
sliding windows, where 𝑁 is the total number of action candidates,
and 𝑃𝑖 = max-pooling( [𝑭 𝑣,𝑠𝑖 , · · · , 𝑭 𝑣,𝑒𝑖 ]) ∈ R𝑑 is the 𝑖-th action
candidate and 𝑠𝑖 and 𝑒𝑖 are its start and end frame index, respec-
tively; And we also compute the sentence features by mean-pooling
on the learned language features: 𝑭 𝑠 = mean-pooling(𝑭𝑞) ∈ R𝑑 .

In the training stage, we use an intra-video loss and an inter-
video loss to learn the video-language alignment. The intra-video
loss treats the action candidates containing the annotated frame
as positive candidates 𝑃+ and others as negatives 𝑃− . It enforces
the similarities between the language query and positive action
candidates larger than the similarities between the language query
and negative candidates by the InfoNCE [27] loss, given by

L𝑖𝑛𝑡𝑟𝑎 = − 1
𝑀

∑︁
𝑝𝑖 ∈𝑃+

log
exp(𝑆 (𝑝𝑖 , 𝑭 𝑠 )/𝜏 )

exp(𝑆 (𝑝𝑖 , 𝑭 𝑠 )/𝜏 ) +
∑︁

𝑝 𝑗 ∈𝑃−
exp(𝑆 (𝑝 𝑗 , 𝑭 𝑠 )/𝜏 )

,

(4)
where 𝑆 (·, ·) is the cosine similarity function;𝑀 is the number of
positive action candidates; 𝜏 is a temperature parameter and set to
0.07 as ViGA [4].

The inter-video loss is also an InfoNCE loss and calculated in a
mini-batch, where the positive candidates 𝑃+ in the paired video-
sentences are positive terms, and all action candidates of unpaired
video-sentences are negative terms. The inter-video enforces the
similarities between positive terms larger than the similarities be-
tween negative terms in a mini-batch, given by

L𝑖𝑛𝑡𝑒𝑟 = − 1
𝑀×𝐵

𝐵∑︁
𝑏=0

∑︁
𝑝𝑏,𝑖 ∈𝑃+

𝑏

log
exp(𝑆 (𝑝𝑏,𝑖 , 𝑭 𝑠𝑏 )/𝜏)

exp(𝑆 (𝑝𝑏,𝑖 , 𝑭 𝑠𝑏 )/𝜏) + N ,

N =
∑︁
𝑗≠𝑏

(
exp(𝑆 (𝑝𝑏,𝑖 , 𝑭 𝑠𝑗 )/𝜏) + exp(𝑆 (𝑝 𝑗 , 𝑭 𝑠𝑏 )/𝜏)

)
,

(5)

where 𝑝𝑏,𝑖 ∈ 𝑃+
𝑏
is the 𝑖-th positive candidates of 𝑏-th video in

a mini-batch; 𝑀 is the size of 𝑃+
𝑏
; 𝐵 is batch size; N denotes the

negative terms of none paired video-sentence in the mini-batch.

3.3 Pseudo-label of Action Frame
The baseline model uses frame annotations to distinguish positive
and negative action candidates, which ignores the temporal coher-
ence of videos. Indeed, the annotated frames play a pivotal role in
the frame-supervised language-driven action localization. A com-
mon intuition is that the frames adjacent to the annotated frame
are more likely to be action frames, while the frames far from the
annotated frame are less likely to be action frames. However, how
these possibilities change remains an open problem.

In this study, we propose to use distribution functions to model
the probability changes, taking into account temporal distance and
visual similarity between video frames. The resulting probabilities
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Figure 3: Probabilities of target action frames by different
distributions: (a) Triangular Distribution, (b) Gaussian Distri-
bution, and (c) Beta Distribution. 𝜏𝑠 and 𝜏𝑒 denote the ground-
truth boundary of target action; 𝐴 is the annotated frame; 𝑇
is the video length; 𝜂 is the minimum probability.

can be viewed as pseudo-labels for action frames, which extends
the annotated frame to its neighbors with different probabilities.
This extension provides valuable guidance for learning cross-modal
alignment, thereby improving the accuracy of action localization.
By leveraging distribution functions in this way, we aim to improve
the performance of action localization in videos. Here we explore
three distributions to model the probability of frames being the
action frames.
Triangular distribution. We start with a simple distribution, the
Triangular distribution, whichmodels the probability changes based
only on the temporal distance between frames. In this distribution,
the probability decreases linearly with the increasing distance from
the annotated frame. As shown in Figure 3(a), we assume that the
minimum probability of vidoe frame is 𝜂, i.e., 𝜂 = 1

𝑇
, where 𝑇 is

the length of video, and the maximum probability of the annotated
frame 𝐴 is 1, the probability of the frame 𝑥 being the action frame
is calculated by

𝑃
𝑓
𝑡 (𝑥) =

{
1
𝐷
( 𝑥 (1−𝜂 )

𝐴
+ 𝜂), 0 ≤ 𝑥 ≤ 𝐴

1
𝐷
( (𝑇−𝑥 ) (1−𝜂 )(𝑇−𝐴) + 𝜂), 𝐴 < 𝑥 ≤ 𝑇

(6)

where the factor 1
𝐷

is used as a normalization factor to ensure that
the sum of all probabilities is equal to 1. However, in cases where
we want the maximum probability to be 1, we can discard this

normalization factor by setting 𝐷 = 1 without affecting the shape
of the distribution.
Gaussian distribution. The Gaussian distribution can also model
the probability changes of action frames. This more sophisticated
distribution assumes that the probability changes follow a bell curve,
with the highest probability occurring at the annotated frame and
gradually decreasing as the distance from the annotated frame in-
creases, as illustrated in Figure 3(b). The mean 𝜇 of the Gaussian
distribution is set to the annotated frame𝐴, and we estimate its vari-
ance 𝜎2 by considering both the temporal distance and visual simi-
larity between frames. The temporal distance between the frame 𝑡
and the annotated frame 𝐴 is 𝐷 (𝑡, 𝐴) = | (𝑡−𝐴) |

𝑇
. The visual similar-

ity is calculated by𝑉 (𝑡, 𝐴) = 0.5×𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑭 𝑣𝑡 , 𝑭 𝑣𝐴 )+0.5,
and finally, the similarity is a weighted sum of temporal distance
and visual similarity:

𝑆𝐼𝑀 (𝑡, 𝐴) = 𝜆1 ·𝑉 (𝑡, 𝐴) + 𝜆2 · (1 − 𝐷 (𝑡, 𝐴)), (7)

where 𝜆1 and 𝜆2 are hyper-parameters. The standard deviation 𝜎
can be estimated by 𝜎 = (𝐶𝑙 +𝐶𝑟 )/2, where 𝐶𝑙 and 𝐶𝑟 denote the
number of frames on the left side (𝑡 < 𝐴) and right side (𝑡 > 𝐴) of the
annotated frame, respectively. These frames satisfy the condition
𝑆𝐼𝑀 (𝑡, 𝐴) ≥ 𝜃 , where 𝜃 is a hyper-parameter set to 0.9 times the
maximum value of 𝑆𝐼𝑀 (𝑡, 𝐴). With 𝜇 and 𝜎 , the probability of the
video frames 𝑥 being the action frame is calculated by

𝑃
𝑓
𝑔 (𝑥) = exp(− (𝑥 − 𝜇)2

2𝜎2 ) . (8)

Since the annotated frame is not always located at the center of the
action, the probability changes of the frames on either side of the
annotated frame may not be symmetrical. However, the Gaussian
distribution assumes that the changes are symmetrical, which limits
its accuracy in certain situations.
Beta distribution. To overcome the limitation of the Gaussian
distribution, we introduce the Beta distribution. As shown in Fig-
ure 3(c), the diverse curve and asymmetric probability of the Beta
distribution enables modeling different relative positions of the
annotated frame within an action. The probability density function
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of the Beta distribution is an exponential function of the variable 𝑥
and its reflection (1 − 𝑥) as follows:

𝑓 (𝑥 ;𝛼, 𝛽) = 𝑥𝛼−1 (1 − 𝑥)𝛽−1

B(𝛼, 𝛽) for 0 ≤ 𝑥 ≤ 1, (9)

where 𝛼 and 𝛽 are the shape parameters, and B(𝛼, 𝛽) is the beta
function serving as a normalization factor to ensure the total prob-
ability is 1. The mean 𝜇 and variance 𝜎2 are calculated by

𝜇 =
𝛼

𝛼 + 𝛽 , 𝜎2 =
𝛼𝛽

(𝛼 + 𝛽)2 (𝛼 + 𝛽 + 1)
. (10)

As the work [41] says, it is hard to directly estimate the parameters
𝛼 and 𝛽 . Thus, we estimate the parameters of Beta Distribution by
its mean and variance. To do so, we again calculate the similarity
between the video frame and the annotated frame by Eq.(7), and
set the similarity value larger than the threshold 𝜃 to 1 and others
to minimum probability 𝜂, same as Triangular distribution, we set
𝜂 = 1

𝑇
, where 𝑇 is the length of video:

𝑆𝐼𝑀 (𝑥,𝐴)
′
=

{
1, 𝑆𝐼𝑀 (𝑥,𝐴) ≥ 𝜃
𝜂, 𝑜𝑡ℎ𝑒𝑟𝑠

(11)

Then the mean 𝜇 and variance 𝜎2 are calculated by

𝜇 =
1
𝑇

𝑇∑︁
𝑥=1

𝑆𝐼𝑀 (𝑥,𝐴)
′
· 𝑥
𝑇
,

𝜎2 =
1
𝑇

𝑇∑︁
𝑥=1

𝑆𝐼𝑀 (𝑥,𝐴)
′
· ( 𝑥
𝑇

− 𝜇)2 .

(12)

Finally, the parameters of the Beta distribution are derived as

𝛼 = 𝜇

(
𝜇 (1 − 𝜇)
𝜎2 − 1

)
, 𝛽 = (1 − 𝜇)

(
𝜇 (1 − 𝜇)
𝜎2 − 1

)
(13)

Therefore, the probability of the video frames 𝑥 being the action
frame is calculated by

𝑃
𝑓

𝑏
(𝑥) = 1

B(𝛼, 𝛽)

( 𝑥
𝑇

)𝛼−1 (
1 − 𝑥

𝑇

)𝛽−1
. (14)

In cases where wewant themaximumprobability to be 1, we replace
the normalization factor B(𝛼, 𝛽) with a min-max normalization. In
general, the Beta distribution ismore complex to estimate than other
distributions, which may limit its applications in some scenarios.
Nonetheless, this distribution is a valuable tool for modeling the
probability of action frames.

Foreground Loss. With the probabilities of video frames being
the action frames, we introduce a foreground loss to enforce the
embedding of the relevant video frame close to the language query,
which helps to learn cross-modal alignment, given by

L𝑓 𝑜𝑟𝑒 = 𝐵𝐶𝐸 (𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑭𝑞, 𝑭 𝑣)/𝜏, 𝑃
𝑓

𝑑
), (15)

where 𝑭𝑞 and 𝑭 𝑣 are the language features and video features,
respectively; 𝐵𝐶𝐸 is the binary cross entropy loss; 𝜏 is the tempera-
ture parameter; 𝑃 𝑓

𝑑
with 𝑑 ∈ {𝑡, 𝑔, 𝑏} are the probabilities of action

frames computed by the Triangular, Gaussian, or Beta distributions.

3.4 Pseudo-label of Boundary Frame
In the baseline model of frame-supervised language-driven action
localization, all action candidates containing the annotated frame
are treated as positive, and others are negative, which may intro-
duce significant noise. As such, we propose to use distribution
functions to model the probability of each video frame being a po-
tential starting or ending boundary of the target action moment. By
modeling the temporal boundaries in this manner, each action can-
didate is assigned a probability of being the target action moment
by multiplying the probabilities of its boundaries.

Given that the annotated frame is inclined to be within the target
action, it is expected to have a minimum probability as a boundary.
And for the positive action candidates 𝑃+ that include the annotated
frame, we designate the one with the maximum cosine similarity
to the language query as the pseudo target action segment, whose
staring and ending boundaries are denoted as 𝑠′ and 𝑒′ in Figure 4,
and assign it a maximum probability of 1. We formulate the starting
boundary probability within the interval [0, 𝐴] and the ending
boundary probability within the interval [𝐴,𝑇 ]. As discussed in
Section 3.3, the starting probability 𝑃𝑠

𝑑
and the ending probability

𝑃𝑒
𝑑
are modeled using distribution functions, and details are omitted

here. Consequently, the probability of an action candidate being
positive (i.e., belonging to the target action) is computed by taking
the multiplication of its boundary probabilities,given by

𝑃
𝑝

𝑑
(𝑖) = 𝑃𝑝

𝑑
(𝑥1, 𝑥2) = 𝑃𝑠𝑑 (𝑥1) × 𝑃𝑒𝑑 (𝑥2), 𝑑 ∈ {𝑡, 𝑔, 𝑏}, (16)

where 𝑥1 and 𝑥2 are the starting and ending frame indexes of the
𝑖-th action candidate, and 𝑑 denotes the index of distributions.

As we assign each action candidate a probability by Eq.(16), we
update the loss function in the baseline model. Specifically, we use
the 𝑃𝑝

𝑑
(𝑖) as the loss weight, and accordingly the intra-video and

inter-video losses are re-written as

L
′
𝑖𝑛𝑡𝑟𝑎 = − 1

𝑀

∑︁
𝑝𝑖 ∈𝑃+

𝑃
𝑝

𝑑
(𝑖 ) · log exp(𝑆 (𝑝𝑖 , 𝑭 𝑠 )/𝜏 )

exp( 𝑆 (𝑝𝑖 ,𝑭𝑠 )
𝜏

) +
∑︁

𝑝 𝑗 ∈𝑃−
exp(

𝑆 (𝑝 𝑗 , 𝑭 𝑠 )
𝜏

)
,

(17)

L
′
𝑖𝑛𝑡𝑒𝑟 = − 1

𝑀 · 𝐵

𝐵∑︁
𝑏=0

∑︁
𝑝𝑏,𝑖 ∈𝑃+

𝑏

𝑃
𝑝

𝑑
(𝑖) · log

exp(𝑆 (𝑝𝑏,𝑖 , 𝑭 𝑠𝑏 )/𝜏)
exp(𝑆 (𝑝𝑏,𝑖 , 𝑭 𝑠𝑏 )/𝜏) + N .

(18)

3.5 Inference
In the inference stage, we first compute the cosine similarity be-
tween the video features and language features and then filter out
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the action candidates that do not contain the top-k frames based
on their similarity scores. After filtering, we rank all the remaining
action candidates to determine the most likely one. This method
allows us to efficiently identify the action in the video correspond-
ing to the language query by considering both frame and segment
features.

4 EXPERIMENTS
4.1 Datasets
To evaluate the proposed method, we conduct experiments on two
benchmark datasets, including the TACoS and the Charades-STA
datasets.

The TACoS dataset is built on the MPII Cooking Compositive
dataset [29], which consists of 127 videos with an average length
of 4.79 minutes. There are around 148 annotated segments per
video. The dataset contains 18,818 samples, including 10,146 for
training, 4,589 for validation, and 4,083 for testing. This dataset is
more challenging due to the long videos and short action segments.

The Charades-STA dataset is built on the Charades dataset [30]
and contains 6,672 daily life videos. The average duration of the
videos is 29.76 seconds. There are about 2.4 annotated segments per
video, whose average duration is 8.2 seconds. The whole dataset
contains 16,128 samples (i.e., pairs of query and action segment),
and we follow the standard split of 12,408 and 3,720 samples for
training and testing.

4.2 Evaluation Metrics
Weadopt twometrics for the performance evaluation: (1)𝑅@𝑛; 𝐼𝑜𝑈 ≥
𝜇, which denotes the recall of top-𝑛 predictions at various thresh-
olds of the temporal Intersection over Union (IoU). It measures the
percentage of predictions that have IoU with ground truth larger
than the threshold 𝜇; (2) mean averaged IoU (mIoU), which de-
notes the average IoU over all the test samples. We set 𝑛 = 1 and
𝜇 ∈ {0.3, 0.5, 0.7}.

4.3 Implementation Details
We use C3D [35] for the TACoS dataset and I3D [3] for the Charades-
STA dataset to extract video features. Adam [10] is adopted for
optimization with an initial learning rate of 1e-4 and half decaying
on plateau. The intermediate feature dimension 𝑑 is set to 512, and
the head number of multi-head self-attention is set to 8. The hyper-
parameters 𝜆1 and 𝜆2 in Eq.(7) are set to 0.2 and 1 for Charades-STA,
and 0.6 and 0.8 for TACoS. The loss weights for all loss items are
set to 1.

4.4 Ablation Studies
We perform in-depth analysis to evaluate each component of our
method on the TACoS and Charades-STA datasets.
Effectiveness of different distributions. We perform an abla-
tion study using the Triangular, Gaussian, and Beta distributions
to demonstrate the effectiveness of incorporating different distri-
butions into the baseline model. The results on the TACoS and
Charades-STA datasets are shown in Table 1 and Table 2, respec-
tively. It is obvious that each of these distributions significantly
improves the performance of the baseline model on the TACoS

Table 1: Ablation studies of different distributions on the
TACoS dataset.

Methods 𝑅@1; 𝐼𝑜𝑈 ≥ 𝜇
𝑚𝐼𝑜𝑈0.3 0.5 0.7

Baseline 17.05 6.45 1.87 15.47
Ours (Triangular) 34.64 19.02 6.47 22.23
Ours (Gaussian) 35.87 19.47 6.95 22.85
Ours (Beta) 36.14 20.17 7.30 23.09

Table 2: Ablation studies of different distributions on the
Charades-STA dataset.

Methods 𝑅@1; 𝐼𝑜𝑈 ≥ 𝜇
𝑚𝐼𝑜𝑈0.3 0.5 0.7

Baseline 70.4 45.05 20.03 44.30
Ours (Triangular) 66.94 42.63 19.22 42.67
Ours (Gaussian) 71.10 48.15 25.65 46.75
Ours (Beta) 71.72 50.13 26.72 47.35

dataset, and similar trends can be seen on the Charades-STA dataset
except for the Triangular distribution, where the Triangular distri-
bution gives small probabilities to the frame near the ground-truth
due to the short videos. Specifically, on the TACoS dataset, the
Triangular distribution improves the 𝑅@1; 𝐼𝑜𝑈 ≥ 0.3 by 17.59%, the
Gaussian distribution improves the 𝑅@1; 𝐼𝑜𝑈 ≥ 0.3 by 18.82%, and
the Beta distribution achieves the greatest improvement with the
gain of 19.09% on the 𝑅@1; 𝐼𝑜𝑈 ≥ 0.3. These results demonstrate
that the pseudo-labels with appropriate probabilities provide pos-
itive guidance for learning cross-modal alignment and boundary
estimation.
Effectiveness of the Beta distribution. The asymmetric nature
of the Beta distribution makes it well-suited to handle the annotated
frames that occur near the action boundaries. To evaluate the effec-
tiveness of the Beta distribution, we conduct experiments where
the training videos are re-annotated by placing annotated frames
at various positions within the video. For example, the annotated
frames are at the first ten percent of the action segment, which we
denote as 0.1 in Table 3. We re-implement ViGA [4] by re-training
the model using the new annotated frames via the open-source
codes for comparison with our method. The comparison results are
reported in Table 3.

Our results show consistent improvements in 𝑅@1; 𝐼𝑜𝑈 ≥ 0.5
and𝑅@1; 𝐼𝑜𝑈 ≥ 0.7, regardless of whether the annotation is located
in the center of the action (represented as 0.5 in Table 3) or near the
action boundaries (represented as 0.1 and 0.9 in Table 3). However,
we observed fewer improvements when the annotations were near
the boundaries, such as at ten (0.1) and ninety (0.9) percentages
of the action segment. This can be attributed to the difficulty in
estimating the distribution parameters accurately in such situations.
We also noticed a slight decrease (less than 1%) in performance on
𝑅@1; 𝐼𝑜𝑈 ≥ 0.3, whichwe believemay be due to the neglect of some
information when the probabilities for certain video frames are
lower. Nonetheless, we are encouraged by the overall effectiveness
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Table 3: Ablation studies of different annotation positions 𝑃
on the Charades dataset. The value format 𝑎/𝑏 in the table
denotes that 𝑎 is the result of the re-trained ViGA [4] and 𝑏
is the result of our method.

P 𝑅@1; 𝐼𝑜𝑈 ≥ 𝜇
𝑚𝐼𝑜𝑈0.3 0.5 0.7

0.1 65.59/65.05 41.42/43.39 20.13/21.64 42.44/42.80
0.3 69.25/70.13 46.05/48.60 20.73/25.38 44.19/46.46
0.5 71.88/71.53 44.97/47.98 21.26/23.28 45.01/45.93
0.7 68.39/68.09 44.41/45.24 19.41/21.34 43.12/43.77
0.9 61.77/61.05 36.29/36.99 15.32/16.75 38.75/38.90

Table 4: Ablation studies of different components on the
Charades-STAdataset. “r1i3” is the short of𝑅@1; 𝐼𝑜𝑈 ≥ 0.3. “v-
s” is the short of visual similarity. “intra” and “inte” represent
the intra-video loss and the inter-video loss, respectively.

v-s intra inter r1i3 r1i5 r1i7 𝑚𝐼𝑜𝑈

1 x x x 70.4 45.05 20.03 44.30
2 ✓ x x 71.32 47.77 22.5 45.44
3 x ✓ x 70.43 47.58 24.7 46.05
4 x x ✓ 71.34 45.11 20.65 44.85
5 ✓ x ✓ 70.97 47.93 23.47 45.85
6 x ✓ ✓ 71.53 47.98 24.73 46.58
7 ✓ ✓ x 71.13 49.14 25.91 47.06
8 ✓ ✓ ✓ 71.72 50.13 26.72 47.35

of our method, as demonstrated by the consistent improvements in
higher IoU thresholds.
Effectiveness of visual similarity. We estimate the distribution
parameters by considering both visual similarity and temporal
distance, as shown in Eq.(7). To evaluate the effectiveness of the
visual similarity, we set 𝜆1 = 0 and remove it from the calculation
of similarity between frames. The results are shown in Table 4,
where “v-s" represents the visual similarity. Comparing the results
in line 1 and 2 where the frame similarity computed by Eq.(7)
is directly used as the probability, and comparing the results in
line 6 and 8 where the Beta distribution is used for probability
calculation, we observe improvements of more than 2.5% and 2%
on 𝑅@1; 𝐼𝑜𝑈 ≥ 0.5, respectively, which clearly demonstrates the
importance of the visual similarity.
Effectiveness of intra-video loss. The intra-video loss, defined
in Eq.(17), enforces similarities between language queries and pos-
itive action candidates more than negative action candidates. It
is computed in a single language-video pair and helps to rank all
the action candidates, thus improving the accuracy of boundary
estimation. To evaluate the effectiveness of the intra-video loss, we
remove it for comparison, and the results are shown in Table 4. We
observe that compared with the result in line 1 without the intra-
video loss, the result in line 3 with the intra-video loss achieves
significant improvements of more than 4% on 𝑅@1; 𝐼𝑜𝑈 ≥ 0.7, and
about 2.5% on 𝑅@1; 𝐼𝑜𝑈 ≥ 0.5. This demonstrates that the intra-
video loss effectively improves the localization accuracy, especially
in high-precision scenarios. Similar trends of comparing the results

in line 5 and line 8, line 2 and line 7, and line 4 and line 6, further
verify the effectiveness of the intra-video loss.
Effectiveness of inter-video loss. The inter-video loss, defined
in Eq.(18), helps to leverage inter-sample information to learn the
diversities of actions and facilitate model training in the early stage.
However, it mainly focuses on learning the differences between dif-
ferent action instances rather than the fine-grained details of action
boundaries. To evaluate the effectiveness of the inter-video loss, we
remove it for comparison, and the results are shown in Table 4. We
observe that using the inter-video loss (lines 4, 5 and 8) improves
the accuracy by about 1% compared with the results without the
inter-video loss (lines 1, 2 and 7). However, this improvement is
relatively small compared to that of the intra-video loss, suggesting
that the intra-video loss is more effective in improving accuracy
and localization performance, especially in terms of high precision,
while the inter-video loss plays a complementary role in improving
the diversity of learned action representations.

4.5 Comparison with State-of-the-art Methods
We compare the proposed method with several state-of-the-art
methods at different levels of supervision, including fully-supervised
methods (CTRL [6], 2D-TAN [48], VSLNet [47]), weakly-supervised
methods (TGA [25], SCN [13], LoGAN [33], CRM [9]), and frame-
supervised methods (ViGA [4], LAS [42]).

The comparison results on the TACoS andCharades-STA datasets
are shown in Table 5 and Table 6, respectively. From the results,
we have observations as follows: (1) Compared with the frame-
supervised methods, i.e., ViGA [4], and LAS [42], our method
achieves more than 10% improvements on the 𝑅@1; 𝐼𝑜𝑈 ≥ 0.3
and 𝑅@1; 𝐼𝑜𝑈 ≥ 0.5 on the challenging TACoS dataset, and more
than 5% improvements on the 𝑅@1; 𝐼𝑜𝑈 ≥ 0.5 and 𝑅@1; 𝐼𝑜𝑈 ≥ 0.7
on the Charades-STA dataset, which demonstrates the effective-
ness of the proposed distribution-based method on modeling the
probabilities of pseudo-labels, especially in more difficult scenar-
ios; (2) Compared with the fully-supervised methods shown in the
upper parts of Table 5 and Table 6, our method achieves compara-
ble results, demonstrating the huge potential of the performance
of frame-supervised language-driven action localization; (3) Com-
pared with the weakly supervised methods shown in the middle
part of Table 6, our method outperforms all other methods in terms
of all metrics by a large margin, showing the superiority of our
method in the scenario that lacks full annotations. These results
suggest that our method achieves satisfying performance on the
TACoS and Charades-STA datasets and is a promising direction for
language-driven action localization.

4.6 Qualitative Analysis
We show several examples of action localization results of our
method and the baseline model on the Charades-STA dataset in
Figure 5. From the first three examples in Figure 5 (a), (b), and (c),
we observe that the action boundaries predicted by our method
are more accurate than the baseline model since the boundary
frames participate in training with appropriate probabilities in our
method. However, as shown in Figure 5 (d), both our method and
the baseline model fail to locate the action boundaries because
the video frames are too similar to distinguish, showing a lack of
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Language query: a person kneeling on the floor talks on a phone
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Ground Truth

Baseline

0s
8.38s

0s
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1s 10.43s
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Beta Distribution 𝑃ୠ
௙

𝑇(a)0

Language query: person throw it on the floor

Ours(Beta)

Ground Truth
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4.45s 9.85s
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7.99s

𝑃ୠ
௙

𝑇

Beta Distribution 

4.39s 9.80s

0 (b)

(c)0

Language query: a person puts food into a sandwich maker

Ours(Beta)

Ground Truth

Baseline

0s 9.09s

0s
9.20s

1s 10.18s
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௙

𝑇

Language query: lastly the person takes a drink from a cup

Ours(Beta)
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12.23s 20.54s

1.96s
10.27s

14.65s

𝑃ୠ
௙

𝑇

Beta Distribution 

9.80s 15.70s

(d)0

Figure 5: Examples of action localization results. “Baseline” denotes the results from the baseline model; “Ours (Beta)” denotes
the results predicted by the model using the Beta distribution; “Beta Distribution” denotes the curve generated by Eq.(14).

Table 5: Comparison with the state-of-the-art methods on
the TACoS dataset. Upper part: Fully-supervised methods;
Lower part: Frame-supervised methods.

Methods 𝑅@1; 𝐼𝑜𝑈 ≥ 𝜇
𝑚𝐼𝑜𝑈0.3 0.5 0.7

CTRL [6] 18.32 13.3 - -
TripNet [8] 23.95 19.17 - -
ABLR [45] 19.50 9.40 - -
DEBUG [21] 23.45 11.72 - 16.03
VSLNet [47] 29.61 24.27 20.03 24.11
2D-TAN [48] 37.29 25.32 - -
ViGA [4] 19.62 8.85 3.22 15.47
LAS [42] 23.64 10.00 3.35 17.39
Ours (Beta) 36.14 20.17 7.30 23.09

sufficient fine-grained motion understanding. It is worth noting
that in all four examples in Figure 5, the estimated Beta distributions
are reasonable and provide guidance information according to the
annotated frame, thereby facilitating the cross-model alignment
and boundary estimation during training.

5 CONCLUSION
We have presented a novel probability distribution based method
for frame-supervised language-driven action localization. By using
distribution functions to model the probabilities of the action frame,
as well as the starting and ending boundaries of the target action,
our method is able to provide more accurate guidance in learning
cross-modal alignment and boundary estimation to compensate

Table 6: Comparisonwith the state-of-the-artmethods on the
Charades-STA dataset. Upper part: Fully-supervised meth-
ods; Middle part: Weakly-supervised methods; Lower part:
Frame-supervised methods.

Methods 𝑅@1; 𝐼𝑜𝑈 ≥ 𝜇
𝑚𝐼𝑜𝑈0.3 0.5 0.7

CTRL [6] - 23.63 8.89 -
2D-TAN [48] - 39.70 23.31 -
LGI [26] 72.96 59.46 35.48 51.38
VSLNet [47] 70.46 54.19 35.22 50.02
TGA [25] 32.14 19.94 8.84 -
SCN [13] 42.96 23.58 9.97 -
LoGAN [33] 51.67 34.68 14.54 -
CRM [9] 53.66 34.76 16.37 -
LAS [42] 60.40 39.22 20.17 39.77
ViGA [4] 71.21 45.05 20.27 44.57
Ours (Beta) 71.72 50.13 26.72 47.35

for the lack of supervision, thus successfully improving the accu-
racy of action localization. Extensive experimental results on two
benchmark datasets demonstrate the effectiveness of our method.
We believe that the distribution-based framework will be a promis-
ing direction for further research in the field of frame-supervised
language-driven action localization.
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