
ADAPTIVE RECURSIVE CIRCLE FRAMEWORK
FOR FINE-GRAINED ACTION RECOGNITION

Hanxi Lin, Wentian Zhao, Xinxiao Wu∗

Beijing Laboratory of Intelligent Information Technology
School of Computer Science, Beijing Institute of Technology, Beijing, China

{hxlin, wentian zhao, wuxinxiao}@bit.edu.cn

ABSTRACT

Intuitively, distinguishing fine-grained actions in videos re-
quires recursively capturing subtle visual cues and learning
abstract features. However, existing deep neural network
based methods are counter-intuitive in that their network lay-
ers do not explicitly model the recursive feature abstraction.
Therefore, we are motivated to propose an Adaptive Re-
cursive Circle (ARC) framework that equips common neu-
ral network layers with recursive attention and recursive fu-
sion. ARC layer inherits the same operators and parameters
as the original layer, but, most critically, it treats the layer
input as an evolving state, thus explicitly achieving recur-
sive feature abstraction by alternating the state update and
the feature generation. Specifically, at each recursive step,
the input state is firstly updated via both recursive attention
and recursive fusion from the previously generated features,
and then the feature abstraction is performed with the newly
updated input state. Significant improvements are observed
on multiple datasets. For example, an ARC-equipped TSM-
ResNet-18 outperforms TSM-ResNet-50 on the Something-
Something V1 and Diving48 datasets with only half over-
heads. Code will be available at: https://github.com/
0HaNC/ARC-ActionRecog.

Index Terms— fine-grained action recognition, recursive
representation, visual reasoning, representation learning

1. INTRODUCTION

In action recognition, great progress has been made by in-
troducing end-to-end spatial-temporal CNNs [1,2] on coarse-
grained benchmarks [3]. However, actions of these bench-
marks are relatively simple and are inclined to be biased by
scene and object appearance [4]. Recently, more fine-grained
datasets [4,5] have been proposed to evaluate fine-grained ac-
tion recognition. Taking Something-Something dataset(SS-
V1) [5] as an example, as illustrated in Fig.1, the action group

∗Corresponding Author.
This work was supported in part by the Natural Science Foundation of

China (NSFC) under Grants No. 62072041.

of “Pouring something” contains five fine-grained actions. In-
tuitively, to distinguish the five actions, one is required to re-
cursively capture various action-related visual cues and then
make final prediction. Therefore, deep neural network layers
are expected to involve more recursive abstractions for learn-
ing fine-grained spatial-temporal patterns.

N Y

N
Pretending to pour something out of
something, but something is empty

Pouring something into something
until it overflows

Hands interacted with container?

Neither of them

shallow

Pouring something onto something

deep

N

Trying to pour something into something, but
missing so it spills next to it

Y

Poured liquid?

Y

Liquid is poured into
the container?

Depth of the container?

N Y

Spilled Liquid?

Pouring something into something

Pretending to pour something
out of something, but something
is empty

Trying to pour something into
something, but missing so it spills
next to it

Pouring something into something
until it overflows

state
evolution

Fig. 1. Left: decision tree for distinguishing fine-grained ac-
tions of ‘Pouring something’ from SS-V1. Right: illustration
of typical actions. ARC is conceptually similar to the exe-
cution of decision tree in the sense of the recursive feature
detections and state evolution.

Most existing deep learning-based methods of fine-
grained action recognition resort to better temporal model-
ing [6–10] or bilinear models [11]. However, none of the
aforementioned methods explicitly model the intuition of
making a hidden state recursively evolving into more abstract
ones within one layer. These methods simply rely on stack-
ing more layers to get finer features, which is counter-intuitive
and inefficient.

In this paper, we propose an Adaptive Recursive Circle
(ARC) framework to augment common layers (e.g., convo-
lutional layers) with recursive attention and recursive fusion.
An ARC layer inherits the same operators (e.g., convolution)
and parameters as the original layer, but, most critically, it
treats the layer input as an evolving state. The state evolution
is achieved by sequentially executing the feature generation
process and recursively alternating the feature generation and
the state update. Guided by the philosophy of “stacked gen-
eralization” [12], the state update is achieved by recursively
reusing the previously generated features to refine the input

state. Specifically, at each recursive step, the input state is
first modulated by the recursive attention and then is injected
with high-order transformed information produced by the re-
cursive fusion. The recursive attention and the recursive fu-
sion are implemented with simple linear transformations with
marginal overheads. ARC helps common layers explicitly
model an evolving state to progressively capture more ab-
stract features within a layer and finally benefits fine-grained
action modeling.

Extensive experiments on the SS-V1 [5], Diving48 [4]
and Kinetics-400 [3] datasets show that ARC outperforms
state-of-the-art methods on fine-grained action recognition.
For example, an ARC-augmented ResNet-18 even outper-
forms the ResNet-50 counterpart with half FLOPs and half
parameters on SS-V1 and Diving48, which validates the ef-
fectiveness and efficiency of ARC on fine-grained action
modeling. The contributions of our work are two-fold:

1. We introduce the state-evolving intuition to augment
a common layer with the capability of progressively model-
ing high-order transformation within a layer to recognize fine-
grained actions.

2. We propose an ARC framework t to instantiate the state
evolution. It significantly boosts the performance of fine-
grained action recognition without bringing expensive extra
computation cost.

2. RELATED WORK

2.1. Fine-grained Action Recognition

Fine-grained action recognition benchmarks [4, 5] refer to
more specific action categories, complicated temporal dy-
namics and less bias of indirect static information (e.g., ob-
ject and background). To facilitate fine-grained action recog-
nition, Zhu et al. [11] explicitly introduce high-order trans-
formations like bilinear operations to capture the fine-grained
feature interactions between frames. Zhou et al. [13] propose
to construct a mid-level object-based part representation and
mine the discriminative ones. Munro et al. [14] exploit multi-
modal alignment in a self-supervision manner.

However, all these works adopt common layers to gener-
ate fine-grained features. In this paper, we augment the com-
mon layer architecture with state evolution to progressively
generate more abstract features, thus further improving the
fine-grained action recognition.

2.2. Recursive Representation

Stacked generalization [12] is a kind of ensemble method that
recursively stacks learnable layers on the outputs of the al-
ready learned classifiers. Following this, Vinyals et al. [15]
propose to recursively train linear SVMs on a recursively up-
dated hidden state to learn visual features. The state update is
governed by random projections of previous SVMs’ outputs
and the original input.

To the best of our knowledge, we are the first to introduce
“stacked generalization” to action recognition. The proposed
ARC sequentially executing the feature generation process of
a layer and recursively updates the input state using recursive
attention and recursive fusion. Compared to traditional re-
cursive representation learning methods, ARC is end-to-end
trainable and exploits deep neural network architectures.

3. OUR METHOD

3.1. A Recap on Common Layers

Before diving into the proposed ARC, a recap of the com-
mon layers is necessary. Without loss of generality, we take
the convolutional layer as an example. Each convolutional
layer consists of many feature detectors (i.e., kernels), and
each feature detector determines a linear transformation on a
local feature map. Through such a linear transformation (i.e.,
convolution), the input features are abstracted once per layer.
The forward pass of a convolutional layer is formulated as

Y = Concat({f(X;w1), f(X;w2), ..., f(X;wc)}) (1)

where X ∈ RT×H×W×Cin is the input of the layer, f(·; ·) is
the operator (e.g., convolution) parameterized by weight wi,
c is the number of output channels, Concat(·) is the concate-
nation operation along the channel dimension, and Y is the
output feature of the layer.

Recalling the intuition illustrated in Fig.1, recognizing
fine-grained actions requires recursively capturing various
spatial-temporal patterns and building more abstract features.
From this aspect, we argue that the simple common layers are
unsuitable for fine-grained action modeling. This argument
encourages us to augment the common layers with larger
model capacity and the sensibility of fine-grained patterns.

3.2. Adaptive Recursive Circle Framework

The core idea of ARC is to make the input state evolve dur-
ing the feature generation process. As illustrated in Fig.2, we
implement the evolution process with recursive global spatial-
temporal attention and recursive fusions. Note that other vari-
ants of implementation are also possible.

The forward pass of an ARC layer is formulated as

Y = Concat({f(X1;w1), f(X2;w2), ..., f(Xc;wc)})
(2)

where X1 is the initial state that equals to the original input
X. It sequentially evolves into X2, X3 and so on. Eventually
it arrives at the final state Xc. Except for the state evolution,
everything else remains unchanged when compared to Eq.1.

In practice, the forward pass of ARC layer is splited into n
steps, and n is a factor of c. The values of every c

n consecutive
states (e.g., X1,X2, ...,X c

n
) are identical. Each step gener-

ates c
n channels of output features and make the input evolve

into a new state. The evolution of the states is formulated as

𝒀

Recursive
Attention

Recursive
Fusion

𝑓(⋅;⋅)
𝑇 × 𝐻 ×𝑊 × 𝐶𝑔𝑒𝑛

𝑇 × 𝐻 ×𝑊 ×𝐶𝑖𝑛

)𝑃𝑜𝑜𝑙𝑆(⋅

)𝑃𝑜𝑜𝑙𝑇(⋅
⊕𝑇 × 1 × 1 × 𝐶𝑔𝑒𝑛

1 × 𝐻 ×𝑊 × 𝐶𝑔𝑒𝑛

)𝑙𝑖𝑛𝑒𝑎𝑟(⋅;𝐖𝑒

)𝑙𝑖𝑛𝑒𝑎𝑟(⋅;𝐖𝑎

𝑇 × 𝐻 ×𝑊 ×𝐶𝑖𝑛

⊕
𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑝𝑝𝑖𝑛𝑔

modulated state

leaky 𝑅𝑒𝐿𝑈

𝑇 × 𝐻 ×𝑊 ×𝐶𝑖𝑛

൯𝑙𝑖𝑛𝑒𝑎𝑟(⋅;𝐖𝑓

⊕

attention weights

leaky 𝑅𝑒𝐿𝑈

high-order transformed
information

new state

modulated state

generated output

old state

generated output

𝐗1 → 𝐗2
→. . . → 𝐗𝑐

sequentially generated……

𝑛 ×

𝐗 ……
reference frame

channel dimension

𝑇 × 𝐻 ×𝑊 ×𝐶𝑖𝑛

𝑇 × 𝐻 ×𝑊 × 𝐶𝑔𝑒𝑛

𝑇 × 𝐻 ×𝑊 ×𝐶𝑖𝑛

𝑇 × 𝐻 ×𝑊 ×𝐶𝑖𝑛

𝑇 × 𝐻 ×𝑊 ×𝐶𝑖𝑛

old state

new state

Fig. 2. The proposed ARC framework makes layer input evolve. Guided by the previously generated features, the recursive
global spatial-temporal attention suppresses the irrelevant features (grey box) or excites the important ones (orange boxes).
Then the recursive fusion distills the high-order transformed features into the modulated state.

Xi =

X , i ≤ c

n
φ(φ(X+WeX+A(Fbi/ c

n c))+

F(Fbi/ c
n c)) , otherwise

(3)
where φ is the leaky ReLU, X is the original input, We ∈
RCin×Cin is the embedding matrix initialized to zero matrix,
A(·) and F(·) represent the recursive attention and the recur-
sive fusion, respectively, i is the current recursive step, b·c
denotes rounding down, Fj is the features that have been gen-
erated (i.e., {f(X1;w1), f(X2;w2), ..., f(Xj c

n
;wj c

n
}). Fj

has Cgen channels of feature in total.

3.2.1. Recursive Attention

At different recursive steps, Recursive Attention (RA) learns
to modulate the state by suppressing or exciting different
channels according to the previously generated features. RA
is formulated as

A(Fj) =

Waj(PoolS(Concat(Fj))⊕ PoolT (Concat(Fj)))
(4)

where Waj is (Wa
km)1≤k≤Cin

1≤m≤j c
n

, Wa ∈ RCin×c is the weight

matrix for attention generation, PoolS(·) and PoolT (·) rep-
resent the spatial max pooling and temporal max pooling, re-
spectively, and ⊕ denotes summation with broadcasting.

RA is a kind of channel attention that is based on the high-
order transformed information aggregated globally across the
spatial-temporal dimensions. We use the additive attention
instead of the common multiplicative attention, since the
additive attention works closely with the leaky ReLU non-
linearity in Eq.3 to suppress some channels to nearly zero or
excite other channels at different recursive steps. We hope

such a mechanism followed by the recursive fusion can make
the input state evolve into a new state that contains less ir-
relevant information and is sensitive to fine-grained spatial-
temporal patterns.

3.2.2. Recursive Fusion

After RA explicitly modulated the state, Recursive Fusion
(RF) fuses the modulated state and the previously generated
high-order transformed features into a new state. RF is for-
mulated as

F(Fj) = Wfj(Concat(Fj)) (5)

whereWfj is (Wf
km)1≤k≤Cin

1≤m≤j c
n

, Wf ∈ RCin×c is an embed-

ding matrix initialized to zero matrix.
RA and RF together turn the original input into several

new states that are sensible to subtle spatial-temporal patterns,
greatly increasing the model capacity for fine-grained action
recognition.

4. EXPERIMENTS

4.1. Datasets

We evaluate ARC on fine-grained datasets like the SS-V1 [5]
and Diving48 [4] datasets. We also conduct experiments on
the coarse-grained Kinetics400 [3] dataset to show the gener-
ality of ARC.

4.2. Implementation Details

ResNet [20] equipped with temporal modeling modules [7,9]
is chosen as our backbone. All convolutional layers except
the 1×1 point-wise ones are augmented with ARC.

Sparse sampling [16] is adopted to sample frames. SGD
with momentum is chosen as our optimizer. For SS-V1 and

Table 1. Performance comparison on SS-V1. Only RGB models are reported. † denotes our implementations.
Model Backbone Pre-train Frames FLOPs×clips/G Param./M Val Top-1/Top-5(%)

Spatial backbones + late fusion:
TSN [16] from [7] ResNet-50 ImgNet 8 33G×1 24.3 19.7/-

TRN [6] BN-Inception ImgNet 8 8×N/A 10.5 34.4/-

Temporal modeling modules:
TSM-RGB [7] ResNet-50 K400 16 65×1 24.3 47.3/77.1

GSM [8] InceptionV3 ImgNet 16 54×2 22.2 51.7/-
CorrNet-R101 [17] ResNet-101 - 32 187×10 - 50.9/-

MSNet [9] TSM-ResNet-50 ImgNet 16 67×1 24.6 52.1/82.3

Spatial-temporal backbones:
I3D from [18] 3D ResNet-50 ImgNet+K400 32 153×2 28.0 41.6/72.2

TEA [10] ResNet-50 ImgNet 16 70×30 - 52.3/81.9
RubiksNet [19] ResNet-50 ImgNet 8 16×1 8.5 46.4/74.5

Fine-grained models:
ABM-iabp [11]† ResNet-18 ImgNet 8×3 30.4×1 26.8 45.1/74.0
ABM-C-in [11] ResNet-50 ImgNet 16×3 - - 49.8/-

ARC (ours) TSM-ResNet-18 ImgNet 8 17×1 14.2 47.9/76.4
ARC (ours) TSM-ResNet-50 ImgNet 8 37×1 27.0 51.2/79.0
ARC (ours) TSM-ResNet-50 ImgNet 16 74×1 27.0 53.4/81.8
ARC (ours) TSM-ResNet-50 ImgNet 8+16 111×1 54.0 55.0/82.6

Table 2. Performance comparison with (perhaps deeper)
common layer baselines. † denotes our implementations.

Model Backbone FLOPs(G) Param.(M) Top-1(%) Gain

SS
-V

1

TSM† ResNet-18 15 11 41.8 -
TSM† ResNet-50 33 24 47.8 -
TSM† ResNet-101 66 44 50.0 -

ARC-TSM ResNet-18 17 14 47.9 +6.1
ARC-TSM ResNet-50 37 27 51.2 +3.4

D
iv

in
g4

8

TSM† ResNet-18 58 11 36.0 -
TSM† ResNet-50 132 24 38.8 -
TSM† ResNet-101 264 44 41.9 -

ARC-TSM ResNet-18 69 14 39.6 +3.6
ARC-TSM ResNet-50 149 27 42.4 +3.6

Kinetics400, multi-step learning rate schedule is adopted. For
Diving48, a cosine learning rate schedule with gradual warm-
up is adopted, following [8]. For all the datasets, the number
of recursive steps of ARC is set to 4, unless otherwise speci-
fied. Other training hyper-parameters are summarized in the
supplementary material.

4.3. Experimental Results

4.3.1. Comparison with Common Layer Baselines

We choose TSM [7] backboned by ResNets [20] as a gen-
eral baseline that is composed of common layers, and con-
duct a fair comparison between the baselines and the ARC-
augmented counterparts on fine-grained datasets.

The results are reported in Table 2. We have the following
observations. First, ARC achieves significant improvements
over the baseline. Second, the overhead increase for ARC
is marginal. The ARC-augmented ResNet-18 models even
outperform the ResNet-50 counterparts with half overheads.

Third, ARC scales well to larger backbones. These observa-
tions highlight the superiority of making the input state evolve
by involving RA and RF in fine-grained action recognition.

4.3.2. Comparison with Existing Fine-grained Models

We compare ARC with the bilinear families which are classic
solutions for fine-grained modeling. Results are summarized
in Table 1. We find that ARC models outperform ABM [11]
by a large margin. Note that the results are reproduced in the
same setting for a fair comparison.

4.3.3. Comparisons with State-of-the-art Methods

Table 1 summarizes the results on SS-V1. We divide the ex-
isting methods into three categories: spatial backbones with
late temporal fusion, temporal modeling module, and spatial-
temporal backbones. The first category loses fine-grained
temporal information in the early stages, resulting in low per-
formance. The others incorporate temporal modeling across
all stages, thus obtaining relatively higher performance. How-
ever, these methods all adopt common layers. Augmenting
the same backbones with ARC achieves best performance.
These observations demonstrate the significant improvement
of ARC augmentation on fine-grained action modeling. In
terms of efficiency, we also report the FLOPs of the ARC
models backboned by ResNet-18. Compared to the most ef-
ficient method, i.e. RubiksNet [19], our ARC models achieve
1.5% and 3.1% higher accuracy respectively with similar
FLOPs.

Table 3 summarizes the results on Diving48. For
Diving48-V1, with nearly half overheads, the ARC-
augmented TSM-ResNet-18 even outperforms TSM-ResNet-
50 by 0.8%. It also outperforms other methods with much

Table 3. Performance comparison on Diving48-V1 and Diving48-V2. † denotes our implementations.
Model Backbone Pre-train Frames FLOPs/G× clips Param./M V1 Top-1(%) V2 Top-1(%)

TSM [7]† ResNet-50 ImgNet 16 65×2 24.3 38.8 -
CorrNet-R101 [17] ResNet-101 - 32 187×10 - 38.2 -

GSM [8] IncV3 ImgNet 16 54×2 - 40.3 -
SlowFast16x8(from [21]) ResNet101 ImgNet 16×30 213×30 - - 77.6

TimeSformer-L [21] ViT-base ImgNet 16×30 238×30 - - 81.0

ARC (ours) TSM-ResNet-18 ImgNet 16 34.2×2 14.2 39.6 -
ARC (ours) TSM-ResNet-50 ImgNet 16 74.2×2 27.0 42.4 89.8

fewer overheads. Furthermore, the ARC-augmented TSM-
ResNet-50 achieves best performance of 42.4% top-1 accu-
racy. For Diving48-V2, similar results are observed. ARC
achieves best performance in both accuracy and efficiency.

Table 4. Ablation study.
(a) Ablations on RA and RF.

recursive attention recursive fusion Top-1(%)

41.8
X 46.3

X 46.7
X X 47.9

(b) Performance comparison on different
number of recursive steps.

n FLOPs/G Param./M Top-1(%)

1 14.6 11.3 41.8
2 17.2 14.2 46.5
4 17.2 14.2 47.9

(c) Ablations on designs of recursive attention.

Interaction Aggregation Attention module Top-1(%)

Multiplicative S GRU 45.0
S FC 46.2

Additive

S GRU 45.6
ST FC 46.5
T FC 47.5
S FC 47.0

S+T FC 47.9

Table 5 summarizes the results on Kinetics400. Even
though Kinetics400 is not a fine-grained dataset, ARC still
achieves comparable results with existing state-of-the-art
methods, showing the generality of ARC.

4.3.4. Ablation Analysis

We analyze the ablation of ARC on SS-V1. Unless otherwise
specified, the backbone, n and the number of sampled frames
are fixed to TSM-ResNet-18, 4 and 8, respectively.
RA and RF. We remove RA or RF to evaluate the contribu-
tions of each module. Results are summarized in Table 4(a).
Interestingly, RA alone works better than RF , while the fea-
ture resolution is hurt by the pooling operations of RA. It

suggests that the separated design of spatial-temporal pool-
ing preserves enough action structures to produce attention
while reducing computational burdens. Overall, all compo-
nents contribute to the improvements, especially for the RA.
Number of Recursive Steps. We tune n to see the per-
formance trends concerning n. The results are shown in Ta-
ble 4(b). Performance improves when n is larger. It is in-
tuitive in that larger n brings longer recursions and gener-
ates more abstract features, thus benefiting fine-grained action
recognition. It is worth noting that the FLOPs and the number
of parameters are constant after n exceeds 2. But, as shown in
the overhead analysis in supplementary material, the linearly
growing memory consumption hinders the increase of n.
Design of RA. We investigate the three aspects of RA as
reported in Table 4(c). For the interaction type, additive at-
tention outperforms multiplicative attention. We argue that
additive operations are more inclined to bias some activa-
tions to the zero-response zone of the ReLU non-linearity and
excite others to learn the feature modulation. On the con-
trary, the diminished gradient problem of the sigmoid func-
tion of the multiplicative attention prevents ARC from gener-
ating concentrated attention. For the information aggregation,
we compare spatial pooling (“S”), spatial-temporal pooling
(“ST”), temporal pooling (“T”), and broadcasting summation
of separated spatial pooling and temporal pooling (“S+T”).
“S+T” performs best since it preserves more coordinated in-
formation. For the attention module, simple fully connected
layer (“FC”) outperforms GRU, probably due to the over-
parameterization of GRU.

4.4. Interpretation

We visualize the state evolution and the class activation maps
(CAM) [22] of the ARC models.
State Evolution. The process of recursive refinement is the
key feature of the proposed ARC. Thus we are interested in
how it works. As shown in Fig.3, the states of all recursive
steps are averaged across channel dimensions, reflecting the
degree of excitation in different regions. At the first recur-
sive step, the feature maps show clear interests in object of
both the foreground and the noisy background (e.g., the gap
between the planks). But as the recursion goes on, the action-
irrelevant are greatly suppressed. At the end of the recursion,

ARC mainly focuses on action-related and discriminative pat-
terns (e.g., the overflowing water and the withdrawn hand).
Class Activation Mapping. We visualize the spatial atten-
tion of the ARC model. As shown in Fig.4, ARC captures
fine-grained action-related details, such as, the overflowing
water, the empty container, the absence of poured water, the
torn paper, and the withdrawn hand.

Table 5. Performance comparison on Kinetics400.
Model Backbone Frames FLOPs/G×clips Val Top-1(%)

TSN [16] InceptionV3 25 3.2×250 72.5
MSN [9] TSM-ResNet-50 8 34×10 75.0
TSM [7] ResNet-50 8 33×30 74.1
I3D [2] BN-Inception 64 108×N/A 72.1

SlowOnly [23] ResNet-50 8 41.9×10 74.8
TEA [10] ResNet-50 8 35×10 75.0

ARC (ours) TSM-ResNet-50 8 37×30 75.0

a. Pouring something into something until it overflows.

b. Pretending to throw something.

RGB recursive step1 recursive step2 recursive step4

Fig. 3. Visualization of state evolution. ARC suppresses the
irrelevant objects and scenes (grey boxes), and enhances the
fine-grained action-related details (orange boxes).

TSM

TSM-ARC

Fig. 4. CAM visualizations. ARC captures action-related
fine-grained details (orange boxes) that the baseline misses.

5. CONCLUSION

We have presented the state-evolving intuition for fined-
grained action recognition. We implement it with a newly
proposed ARC framework, which is the first to model the
recursive fine-grained refinement of actions within a neural
network layer. ARC is general and can be easily applied to
most existing backbones. Extensive experiments demonstrate
the strong performance and efficiency of ARC on fine-grained
action recognition. In the future, we are going to extend our
method to more network architectures such as Transformer.

6. REFERENCES

[1] Tran et al., “Learning spatiotemporal features with 3d
convolutional networks,” in ICCV, 2015. 1

[2] Carreira et al., “Quo vadis, action recognition? a new
model and the kinetics dataset,” in CVPR, 2017. 1, 6

[3] Kay et al., “The kinetics human action video dataset,”
arXiv preprint arXiv:1705.06950, 2017. 1, 2, 3

[4] Li et al., “Resound: Towards action recognition without
representation bias,” in ECCV, 2018. 1, 2, 3

[5] Goyal et al., “The” something something” video
database for learning and evaluating visual common
sense.,” in ICCV, 2017. 1, 2, 3

[6] Zhou et al., “Temporal relational reasoning in videos,”
in ECCV, 2018. 1, 4

[7] Lin et al., “Tsm: Temporal shift module for efficient
video understanding,” in ICCV, 2019. 1, 3, 4, 5, 6

[8] Sudhakaran et al., “Gate-shift networks for video action
recognition,” in CVPR, 2020. 1, 4, 5

[9] Kwon et al., “Motionsqueeze: Neural motion feature
learning for video understanding,” in ECCV, 2020. 1, 3,
4, 6

[10] Li et al., “Tea: Temporal excitation and aggregation for
action recognition,” in CVPR, 2020. 1, 4, 6

[11] Zhu et al., “Approximated bilinear modules for temporal
modeling,” in ICCV, 2019. 1, 2, 4

[12] Wolpert et al., “Stacked generalization,” Neural net-
works, 1992. 1, 2

[13] Zhou et al., “Interaction part mining: A mid-level ap-
proach for fine-grained action recognition,” in CVPR,
2015. 2

[14] Munro et al., “Multi-modal domain adaptation for fine-
grained action recognition,” in CVPR, 2020. 2

[15] Vinyals et al., “Learning with recursive perceptual rep-
resentations,” NIPS, 2012. 2

[16] Wang et al., “Temporal segment networks: Towards
good practices for deep action recognition,” in ECCV,
2016. 3, 4, 6

[17] Wang et al., “Video modeling with correlation net-
works,” in CVPR, 2020. 4, 5

[18] Wang et al., “Non-local neural networks,” in CVPR,
2018. 4

[19] Fan et al., “Rubiksnet: Learnable 3d-shift for efficient
video action recognition,” in ECCV, 2020. 4

[20] He et al., “Deep residual learning for image recogni-
tion,” in CVPR, 2016. 3, 4

[21] Gedas Bertasius, Heng Wang, and Lorenzo Torresani,
“Is space-time attention all you need for video under-
standing?,” in ICML, 2021. 5

[22] Zhou et al., “Learning deep features for discriminative
localization,” in CVPR, 2016. 5

[23] Feichtenhofer et al., “Slowfast networks for video
recognition,” in ICCV, 2019. 6

