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Adaptive Latent Graph Representation Learning
for Image-Text Matching

Mengxiao Tian, Student Member, IEEE, Xinxiao Wu , Member, IEEE, and Yunde Jia , Member, IEEE

Abstract— Image-text matching is a challenging task due to
the modality gap. Many recent methods focus on modeling entity
relationships to learn a common embedding space of image and
text. However, these methods suffer from distractions of entity
relationships such as irrelevant visual regions in an image and
noisy textual words in a text. In this paper, we propose an
adaptive latent graph representation learning method to reduce
the distractions of entity relationships for image-text matching.
Specifically, we use an improved graph variational autoencoder
to separate the distracting factors and latent factor of rela-
tionships and jointly learn latent textual graph representations,
latent visual graph representations, and a visual-textual graph
embedding space. We also introduce an adaptive cross-attention
mechanism to perform feature attending on the latent graph
representations across images and texts, thus further narrowing
the modality gap to boost the matching performance. Extensive
experiments on two public datasets, Flickr30K and COCO, show
the effectiveness of our method.

Index Terms— Image-text matching, latent representation
learning, graph variational autoencoder.

I. INTRODUCTION

IMAGE-TEXT matching has achieved remarkable progress
in a variety of applications, such as cross-modal

retrieval [1], [2], image captioning [3], [4], and visual question
answering [5], [6]. Image-text matching is a challenging
task due to the fact that there exists a large modality gap
between image and text. Many methods [7], [8] have suc-
cessfully used deep neural networks to extract the global
visual features of an image and the global features of a
text, respectively, and then map these two global features
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Fig. 1. Examples of prominent distracting factors of relationships between
entities in both image and text: (a) distraction from the irrelevant object region
in the red bounding box, (b) distraction from the irrelevant background in the
red bounding boxes, and (c) distraction from noisy words in red font.

into a common embedding space for similarity evaluation.
Some local representation based methods [9], [10] seek to
align local visual regions and textual words, which effectively
capture the similarities between different modalities. However,
they often overlook the rich entity relationships contained
in images and texts, which has been demonstrated to play
pivotal roles in video understanding [11], [12] and text classifi-
cation [13], [14].

More recent methods [15], [16], [17], [18] use graph struc-
tures to capture the relationships between entities in both
image and text for aligning image and text, which have
achieved good performance. However, these methods suffer
from the distracting factors of entity relationships in both
image and text, such as irrelevant objects and background
regions in images, and noisy words and phrases in texts,
leading to the false cross-modal alignments. Fig. 1(a) shows an
example of irrelevant object regions in an image. The image
contains salient objects of “man in black uniform”, “man
in purple uniform” and “rugby”, whereas the corresponding
text “A man in a black uniform, covered in mud, tugs on
the purple uniform of another rugby player” does not have
the relevant description of the onlooker in purple uniform.
Fig. 1(b) shows an example of irrelevant background regions
in an image. The image has the background regions of “man
riding a motorcycle”, “woman in pink”, and “some people who
walk”, which does not correspond to any description in the text
“A woman wearing a hat is riding a bike”. The aforementioned
irrelevant objects and background regions in images may result
in misalignments between visual regions and textual words.
Fig. 1(c) demonstrates an example of noisy words or phrases
in the text, where the phrase “two people” is invisible in the
image.

To address the issue of distracting factors, in this paper,
we propose an adaptive latent graph representation learning
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method that reduces the distracting factors of entity relation-
ships for accurate image-text matching. Our method is inspired
by variational autoencoder [19] that disentangles modality-
specific factors of observational data through KL divergence
between the posterior distribution and a standard Gaussian
prior distribution. Specifically, we first build a visual graph
for an image and a textual graph for a sentence.

A node in the visual graph represents a visual object, and an
edge represents a visual relationship between two connected
objects; a node in the textual graph represents a word, and an
edge represents a semantic relationship between two words.
Then we introduce an improved graph variational autoencoder
to jointly learn latent textual graph representation, latent visual
graph representation, and a common graph embedding space
shared by image and text. Benefiting from the ability of
variational autoencoder to partition the underlying explana-
tory factors in latent space, the autoencoder separates the
alignable latent factor and the unalignable distracting factors.
This is done by using a variational lower bound to model
the approximate posterior distribution of the visual or the
textual graph representation. By filtering out the distracting
factors, the alignable latent factor can be regarded as the
latent modality-invariant graph representation, narrowing the
gap between visual and textual modalities. The learned latent
graph representations of image and text are projected into a
common latent space where the distributions of the two graph
representations are aligned by minimizing the Wasserstein
distance between them.

To further narrow the gap between visual and textual modal-
ities, we introduce an adaptive cross-attention mechanism to
perform feature attention on the latent graph representations
of image and text. The attention weights assigned to the latent
representations of different modalities are adaptively adjusted
to facilitate concentrating on more salient and important entity
relationships for image-text matching. We also introduce a
two-phase training strategy to train the graph construction
network and then optimize the whole network to improve the
discriminative ability of the disentangled representations.

The remainder of this paper is organized as follows.
In Section II, we summarize previous works related to our
method. Section III describes an adaptive latent graph repre-
sentation learning method for image-text matching. Section IV
discusses experimental results on two public datasets, and
conclusion is given in Section V.

II. RELATED WORK

A. Image-Text Matching

From the perspective of feature representation learning,
the methods of image-text matching can be roughly divided
into two categories: global representation learning and local
representation learning. The global representation learning
methods [20], [21] employ pre-trained deep neural networks
to extract the global features of images and texts, and learn
a common embedding space between the visual and textual
features. Frome et al. [21] proposed a visual-semantic embed-
ding model that extracts visual features of images by CNN and
textual features of texts by Skip-Gram. In recent years, most

approaches [22], [23] employ varieties of RNN architecture
to capture the long-range contextual information of language.
Kiros et al. [22] used LSTM to extract the global semantic
representations of texts. Faghri et al. [23] also used the global
features of images and texts extracted by CNN and GRU,
respectively, and designed a novel objective function with hard
negative mining to further improve the matching accuracy.

The local representation based methods [24], [25] extract
local patterns to align visual regions and words for image-
text matching. Karpathy et al. [24] detected visual regions
in images by the pre-trained R-CNN, and then learned the
similarities between words in sentences and regions in images.
Motivated by the success of bottom-up attention mecha-
nism [26], Lee et al. [27] presented a stacked cross-attention
model to aggregate the local similarity matching results
between image regions and words. Wang et al. [28] proposed a
cross-modal adaptive message passing method to learn inter-
actions across regions and words. To capture the contextual
information of different modalities, Qu et al. [29] proposed a
gating self-attention for context modeling to enhance image
and text representations. Later, they designs four connected
network cells to capture both inter-modal interactions and
intra-modal relationships [30].

In order to reduce some noises which are often uncorrelated
to other modalities, several methods have been proposed by
introducing various loss functions [31], [32]. Song et al. [31]
employed a diversity loss to penalize the redundancy for
learning diverse embedding representations of an instance.
Huang et al. [32] randomly shuffled the captions of training
images as noise in different proportions, and rectified the
noise by using an adaptive prediction function and a novel
triplet loss. In contrast, our method focuses on learning
well-separated representations by filtering out the irrelevant
information in each modality. Moreover, our method uses
graph structures to capture the relationships between entities
and learns a common graph embedding space shared of image
and text.

B. Graph Representation Learning

The graph representation has been commonly used to model
relationships between entities in vision-language tasks, includ-
ing image captioning [33], [34], [35], visual question answer-
ing [36], [37] and visual common sense reasoning [38], [39].
Some image-text matching methods [7], [15], [16], [40]
employ graph structures to enhance the monolithic repre-
sentations of visual and textual contents, and achieve a
good performance. Li et al. [7] proposed a visual semantic
reasoning method that learns relationships between object
regions in images to generate enhanced visual representa-
tions. Liu et al. [15] proposed a graph matching network
to perform node-level and structure-level matching between
images and texts. Wang et al. [16] built scene graphs to
represent images and texts, and then performed object-level
and relationship-level matching between images and texts on
the scene graphs. However, these methods suffer from the
prominent distracting factors of relationships. To address this
problem, we introduce the variational autoencoder into the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 04,2023 at 13:16:36 UTC from IEEE Xplore.  Restrictions apply. 



TIAN et al.: ADAPTIVE LATENT GRAPH REPRESENTATION LEARNING FOR IMAGE-TEXT MATCHING 473

Fig. 2. Overview of the adaptive latent graph representation method.

graph representation learning to separate the distracting factors
and the latent factor of entity relationships. Reference [40]
is more related to our work, which calculates the distraction
scores by using an information-theoretic entropy to quantify
visual distractions. Our work mainly focuses on exploring a
disentanglement learning method to filter out the distracting
factors for image-text matching task.

C. Latent Representation Learning

Latent representation learning aims to identify and separate
the explanatory features that are relatively unaffected by other
feature changes, and has been widely studied in few-shot learn-
ing learning [41], [42], zero-shot learning [43], [44], [45], [46],
and cross-modal retrieval [47], [48], [49], [50], [51]. The most
relevant methods of latent representation learning to our work
are [44] and [49]. Ye and Shen [44] presented a graph metric
learning method that can learn graph representations by intro-
ducing variational structures without taking into account the
relationship information between nodes for graph encoding.
Unlike their work, our method adaptively learns the impor-
tance of neighboring nodes in the encoding process to enhance
the embedding ability of the graph encoder. Fu et al. [49]
presented a stochastic latent variable model to achieve the
alignment between recipes and food images by extracting the
global feature vectors of images and texts. Different from their
method, our method introduces graph structure into variational
autoencoder to capture the fine-grained relationships between
entities for image-text matching in a shared latent graph
representation space.

III. OUR METHOD

Our method consists of two modules: a graph construction
module and an improved graph variational autoencoder. The
graph construction module constructs a visual graph and a
textual graph, respectively, to represent the entity relationships
in image and text. The improved graph variational autoencoder
learns a common latent representation space of the visual and
textual graphs via separating the distracting factors and the
latent factor of relationships. Then the latent representations
of the visual and textual graphs get attention by using the
adaptive latent graph attention to focus on more salient and
important entity relationships. Fig. 2 shows the overview of

our method, where the improved graph variational autoencoder
is our main contribution.

To train our model, we introduce a two-phase training
strategy, where the graph construction module is pre-trained
using the ranking loss Lrank and then the whole network is
trained using the whole loss L.

A. Graph Construction

1) Visual Graph: We construct a visual graph Gv =

(Vv, Ev) to model the structural information among visual
objects in an image. Each node v ∈ Vv denotes a visual object
and each edge e ∈ Ev denotes the visual relation between
the two connected objects. We use a region-level feature
extracted by an image embedding module [29] to represent
a node, and we then perform self-attention over the region-
level feature. The edge is initialized by heuristic information
of the semantic similarity between the two connected objects.
Denote Av

∈ R|Vv |×|Vv | as the adjacent matrix of nodes, where
|Vv| is the number of nodes. If there exists an edge from node
vi to node v j , we set Av(i, j) = 1. In practice, we construct
an undirected fully-connected graph to represent the semantic
interactions between visual objects, and all the elements of
Av are set to 1. Subsequently, we normalize each row of Av

to make the sum of edge values connected to node vi as 1.
Let Xv

∈ R|Vv |×d be the node features of a visual graph,
where the i-th row xv

i is the visual feature of node vi , and
Sv

∈ R|Vv |×|Vv | be the similarity matrix of the nodes, where
the element sv

i, j is the similarity between node vi and node
v j . The edge weights of a visual graph are given by

Wv
e = Sv

⊙ Av,

sv
i j =

exp(LeakyRelu((Wv
q xv

i )
⊤(Wv

k xv
j )))∑|Vv |

j=0 exp(LeakyRelu((Wv
q xv

i )
⊤(Wv

k xv
j )))

, (1)

where ⊙ is element-wise multiplication, and Wv
q and Wv

k are
the trainable parameters.

2) Textual Graph: We use an undirected fully-connected
graph G t = (Vt , Et ) for each text. And each node t ∈ Vt
denotes a word, represented by a word embedding feature [29],
and each edge e ∈ Et denotes the relationship between the
two connected words, preliminary estimated by the semantic
similarity between them. The topological structure of the
textual graph G t is represented by the adjacency matrix
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At
∈ R|Vt |×|Vt |, where |Vt | is the number of nodes. The

undirected edge value is set to 1 if there exists an edge from
node ti to node t j , and all the elements of the adjacent matrix
are set to 1, i.e., At (i, j) = 1. With regard to normalization,
we perform a normalization of At , similar to the normalization
of Av . Let X t

∈ R|Vt |×d be the node features of the textual
graph, where the i-th row xt

i is the textual feature of node ti ,
and St

∈ R|Vt |×|Vt | be the similarity matrix, where the element
st

i, j is the similarity information between node ti and node t j .
Similar to the calculation of the edge weights Wv

e of the visual
graph, we calculate the edge weights of the textual graph as
follows:

W t
e = St

⊙ At ,

st
i j =

exp(LeakyRelu((W t
q xt

i )
⊤(W t

k xt
j )))∑|Vt |

j=0 exp(LeakyRelu((W t
q xt

i )
⊤(W t

k xt
j )))

, (2)

where W t
q and W t

k are the learnable parameters.

B. Improved Graph Variational AutoEncoder

Given the constructed visual graphs of images and textual
graphs of texts, the core issue resides in how to learn a
common graph representation between the images and texts
by capturing the entity relationships for image-text matching.
To separate the distracting factors of entity relationships,
we introduce an improved graph variational autoencoder that
uses the variational autoencoder into graph encoding to learn
the latent representations of visual and textual graphs.

1) Variational Autoencoder: The variational autoencoder
is capable of disentangling the explanatory features in a
latent space [52] by filtering out the modality-specific fea-
tures of variations from observed data. It typically learns
two kinds of representations for each modality. One is
modality-invariant representation for reducing the modal-
ity gap between multimodal signals from different sources.
The other is modality-specific representation for holding
distinctive information for each modality. To achieve the
modality-disentangled representation learning, the variational
autoencoder employs a regularization of the KL divergence
between the approximate posteriors and the priors in the latent
representation space, and the priors impose modality-invariant
features to be independent of the modality-specific features.

In concrete, the encoder in variational autoencoder converts
the observed input data c into a latent conditional distribution,
modeled by Gaussian distribution with the mean µ and stan-
dard deviation σ . Then, a latent representation z is randomly
sampled from the Gaussian distribution N (µ, σ ). Finally, the
latent representation is used to reconstruct the input data by the
decoder. The objective function of the variational autoencoder
is defined as the variational lower bound to the log likelihood:

Ez∼qθ (z|c)[log pφ(c|z)] − DKL(qθ (z|c)||p(z)), (3)

where p(z) is the prior distribution for z. pφ(c|z) can be
treated as a decoder, and qθ (z|c) can be treated as an encoder
that is modeled by a factorized Gaussian distribution with
a diagonal covariance matrix. The first term of Eq. 3 is a
reconstruction error to observe how effectively the decoder

learns to reconstruct c given its latent representation z. The
second term is KL divergence to measure the distance between
qθ (z|c) and p(z). Let’s make it clear that a latent represen-
tation z is generated from the Gaussian distribution by using
the reparametrization trick [53].

2) Graph Encoding: Different from [44] and [45] that both
treat different neighbor nodes equally during the aggrega-
tion process by using a two-layer graph convolution net-
work (GCN), we design a self-attention graph neural network
(GNN) to assign different weights to different neighborhoods
by taking into account the different contributions of neighbor-
hoods to improve the graph encoding performance. Specifi-
cally, the edge weights are integrated into the self-attention
graph layer for more flexibility, and the node features are
updated through the self-attention mechanism

Z = ELU(W e XW), (4)

where Z ∈ R|V |×d , W e is the normalized edge weight matrix
of visual graph or textual graph described in Section III-A
earlier, X is the input node features, W is the learnable
parameter, and ELU(·) is an activation function.

For the visual graph, we design the graph encoder with a
two-layer self-attention GNN to generate the updated node
features Zv , which is the output of the first self-attention
GNN layer. For the textual graph, we combine a self-attention
GNN and a gated graph neural network (GGNN) into a graph
encoder. Given the input textual node features X t , we feed X t

into the self-attention GNN layer to generate the updated node
features Zt

1, and then feed Zt
1 into the GGNN layer. We stack

the GGNN layer m times to ensure that each node receives
more information from its high-order neighbors. That is to say,
the message from one node is propagated to another node in
an m-hop way:

Zt
1
(m)

= Z̃t
1
(m)

⊙ U (m)
+ Zt

1
(m−1)

⊙ (1 − U (m)),

Z̃t
1
(m)

= tanh(W za(m)
+ Fz(r(m)

⊙ Zt
1
(m−1)

) + bz),

r(m)
= sigmoid(W r a(m)

+ Fr Zt
1
(m−1)

+ br ),

U (m)
= sigmoid(WU a(m)

+ FU Zt
1
(m−1)

+ bu),

a(m)
= At Zt

1
(m−1)Wa, (5)

where At is the adjacency matrix of the textual graph, Zt
1
(m)

is the final updated node features of the textual graph, W∗,
F∗ and b∗ are the learnable parameters, and U (m) and r(m)

are the update gate and reset gate, respectively.
3) Latent Graph Representation Learning: Our goal is to

learn a common latent graph representation of image and
text, which is shared by different modalities by discarding the
modality-specific features to achieve the representation disen-
tanglement. Based on the aforementioned graph encoding, the
learned node features Zv in the visual graph are used as the
latent graph representation of the image, and the learned node
features Zt

1
(m) in the textual graph are used as the latent graph

representation of the text.
Since the operation of sampling from the Gaussian distrbu-

tion is non-differentiable, we reparametrieze latent representa-
tion to make the gradient descent possible. Taking the visual
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graph for instance, the reparametrized latent representation is
randomly sampled as follows:

Ẑv
= Zv

+ σ v
⊙ ϵv, (6)

where σ v is the output of the second self-attention GNN layer
and is used to model the modality-specific information for
images, ⊙ is the element-wise product, and ϵv

∼ N (0, I) is an
auxiliary noise variable. Notably, the prior distribution p(Ẑv)

is assumed to be a Gaussian distribution that satisfies p(Ẑv) ∼

N (0, I). Then, the approximation of posterior distribution Ẑv

is represented as

q(Ẑv
|Gv) ∼ N (Zv, σ v2

), (7)

To enhance the representation ability of node features, the
node features are reconstructed by a visual graph decoder
DV(·), which is implemented by a linear layer with a sigmoid
layer. Here, we design a smooth variational reconstruction loss
by the L1 loss, which has little change in the gradient of the
predicted value to ensure training stability. Benefiting from the
variational reconstruction, the visual node features generated
by the graph construction module contain informative and
necessary details, and the approximate posterior estimation
is more accurate, thus improving the discriminativeness and
robustness of the latent graph representation. The reconstruc-
tion loss for the visual graph is given by

Lv
r =

{
0.5(Xv

− Xv ′)⊤(Xv
− Xv ′), |Xv

− Xv ′
| < 1

|Xv
− Xv ′

| − 0.5, otherwise
(8)

where Xv is the input visual node features, and Xv ′
= DV(Z̃v

)

is the reconstructed node features via the visual graph decoder
DV(·). Z̃v is the updated reparametrized latent representation
via an adaptive latent graph attention module that will be
illustrated in Section III-B.4 later.

Similarly, the error reconstruction function for the text graph
is formulated as

Lt
r =

{
0.5(X t

− X t ′)⊤(X t
− X t ′), |X t

− X t ′
| < 1

|X t
− X t ′

| − 0.5, otherwise
(9)

Formally, the final loss of the improved graph variational
autoencoder is defined as

Lg = Lv
r + Lt

r + LK L , (10)

where Lv
r and Lt

r represent the visual graph reconstruction
loss and the textual graph construction loss, respectively.
LK L is the summation of KL divergences between the prior
distribution and the posterior approximation distribution on
both image and text:

LK L = DK L(q(Ẑv
|Gv)||p(Ẑv))+ DK L(q(Ẑt

|G t )||p(Ẑt ))

(11)

The training objective of the improved graph variational
autoencoder is to disentangle the common semantic infor-
mation from the modality-specific information to avoid the
distractions of the unalignable features.

The final latent graph representations for image and text are
given by

ev
= readout(Zv),

et
= readout(Zt

1
(m)

), (12)

where readout(·) denotes an average operation over the input
features. Furthermore, to align the distributions of latent
semantic representations towards modalities, we push the prior
graph embedding distributions of image and text to be close
by minimizing their Wasserstein distance loss

LW D = (||ev
− et

||
2
+ ||readout(σ v) − readout(σ t)||2)

1
2 .

(13)

4) Adaptive Latent Graph Attention: To further narrow
the modality gap between image and text, we use an adap-
tive cross-attention mechanism to capture the latent interac-
tions between visual and textual representations. With the
adaptive latent graph attention, our method focuses on the
more common and important entity relationships in image
and text by adjusting the attention weights across the latent
representations of different modalities. The adaptive latent
graph attention aggregates the local features of one modality
using the cross-modal attention weights, and integrates the
aggregated feature into the local features of the other modality,
as shown in Fig 2.

Given the reparametrized latent visual representation Ẑv

and the reparametrized latent textual representation Ẑt , the
attention weight is calculated by multiplication of Ẑv and
Ẑt , and then the output probability is produced by a
softmax normalization function. Further, we aggregate the
reparametrized latent representation of visual graph (or textual
graph) with the attention weights and make concatenation with
the opposite reparametrized latent representation to obtain the
updated reparametrized latent representation of textual graph

Z̃
t

(or updated reparametrized latent representation of visual
graph Z̃

v
). The whole process can be formulated as

Z̃
v

= FC(concat((softmax(Ẑv Ẑt ⊤) ⊙ Ẑt ), Ẑv)),

Z̃
t

= FC(concat((softmax(Ẑt Ẑv⊤

) ⊙ Ẑv), Ẑt )), (14)

where concat(·, ·) is the concatenation operation, and FC(·)

is the fully-connected layer that converts the enhanced latent
representation into a h-dimensional feature vector.

C. Joint Training

To encourage the similarity scores of the matched
image-text pairs to be larger than that of the mismatched pairs,
we define the ranking loss as

Lrank = max(0, m + S(ev, et −) − S(ev, et ))

+max(0, m + S(ev−
, et ) − S(ev, et )), (15)

where m is a margin factor, S(·) is the cosine similarity
between two latent representations, (ev, et ) is the matched
image-text pair, and (ev, et −) and (ev−, et ) are the corre-
sponding hardest negative pairs in a mini-batch.
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TABLE I
COMPARISON RESULTS ON THE FLICKR30K DATASET. “*” REPRESENTS THE AVERAGED SIMILARITY SCORES OF TWO SINGLE MODELS TRAINED

INDEPENDENTLY. THE BEST AND SECOND-BEST PERFORMANCES ARE IN BOLD AND UNDERLINE, RESPECTIVELY

Overall, the whole loss function of our method is defined
as

L = λLg + LW D + Lrank, (16)

where Lg is the loss function of the improved graph variational
autoencoder, LW D is the Wasserstein distance loss for aligning
the graph embedding distributions of images and texts, defined
in Eq. 13, Lrank is the ranking loss, and λ is a trade-off
parameter.

To learn more discriminative representations, we introduce a
two-phase training strategy owing to the fact that the condition
of randomly sampled latent distribution is unstable at the
beginning of training. In the first phase, the graph construction
network is trained by using the ranking loss Lrank . In the
second phase, the whole network is trained by using the whole
loss L. Training the improved graph variational autoencoder
is vulnerable to suffer from KL vanishing during training.
We use an annealing algorithm to mitigate this issue, and the
parameter λ is initialized to 1e-3 and gradually increased to
0.5 until epoch 15 in Flickr30K or epoch 30 in COCO.

IV. EXPERIMENTS

A. Datasets

We evaluate our method on two different datasets:
Flickr30K and COCO. The Flickr30K dataset has 31,783
images with five sentences provided for each image. We split
the dataset into 29,000 images for training, 1,000 images
for validation, and 1,000 images for testing, which is the
same splitting as work [23], [24]. The COCO dataset is a
very challenging and large-scale dataset, which is split into
113,287 images for training, 5,000 images for validation and
the rest 5,000 for evaluation. Each image has five sentences
for description.

B. Implementation

We report results by either averaging over 5 folds of 1K test
images or directly evaluating on the full 5k test images and
use the image embedding module and text embedding module
in [29] to extract the initial region features and word features,
where the feature dimension is set to 2048. The dimensions of

the latent graph representation and the hidden states are 2048.
The margin hyper-parameter m in the ranking loss is set to
0.2. The trade-off parameter λ in the whole loss is set to 1.
The Adam optimizer [54] is used, the learning rate is set to
0.0001, and the batch size is set to 128.

C. Evaluation Metrics

We evaluate the image-text matching performance by using
the proportion of query that matches the correct item in
the top-k results, denoted by R@K, K=1, 5, 10. The sum
of all R@K is calculated to evaluate the overall matching
performance, denoted by Rsum.

D. Comparison with State-of-the-Art

We compare our method with following state-of-the-art
methods, SCAN [55], CAMP [28], VSRN [7], SGM [16],
MMCA [56], VSM [40], VSM+Dist [40], PVSE [31],
GSMN [15], CAMERA [29], SAF [10], and NCR [32]. Table I
and Table II show the comparison results on the Flickr30K
dataset and the COCO dataset, respectively. Table I and
Table II show the comparison results on the Flickr30K dataset
and the COCO dataset, respectively, where the integrated
model marked “*” represents the average similarity score of
the two individual models trained independently, with the
best and suboptimal results marked with bold and under-
lined, respectively. From the results, we have the following
observations:

• Our method achieves competitive results in both text-to-
image and image-to-text matching on the two datasets,
indicating the superiority of learning effective latent
graph representation to reduce distractions of entity rela-
tionships. The performance improvement on the COCO
dataset is not so significant as that on the Flickr30K
dataset. The possible reason is that COCO images have
fewer objects and simpler relationships, and the advantage
of the latent graph representation learning on reducing
distractions is not fully exploited.

• Compared with the most relevant methods that also aim
to solve the distraction problem (VSM+Dist, PVSE,
SAF and NCR), our method generally achieves better
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TABLE II
COMPARISON RESULTS ON THE COCO DATASET. “*” REPRESENTS THE AVERAGED SIMILARITY SCORES OF TWO SINGLE MODELS TRAINED

INDEPENDENTLY. THE BEST AND SECOND-BEST RESULTS ARE IN BOLD AND UNDERLINE, RESPECTIVELY

performance on most evaluation metrics, showing the
benefit of the improved graph variational autoencoder on
separating the alignable latent factor and the unalignable
distracting factors of entity relationships.

• Compared with other methods that introduce complex
cross-attention modules (SCAN, CAMP, SGM, MMCA
and GSMN), our method only uses a simple inner cosine
product to calculate the semantic similarity between
image and text, but still achieves better performance,
which further validates the importance of disengaging the
distracting factor in image-text matching.

E. Ablation Study

To investigate the effectiveness of the components, we intro-
duce several variants of our method for comparison on the
Flickr30K and COCO 5K datasets using a single model.

1) Effect of Latent Graph Representation: To verify
whether the latent graph representation is profitable for image-
text matching, we compare our method with the following
variants.

• Baseline: we remove the visual and textual graph struc-
tures to evaluate the graph representations. In this case,
the images and texts are encoded using the embedding
modules in [29]. That is, both the graph construction
module and the improved graph variational autoencoder
are removed.

• w/o graph: we replace the improved graph variational
autoencoder with a variational autoencoder and remove
the graph construction module, to evaluate the effective-
ness of latent graph representations.

• GCN for both image and text: we use a two-layer GCN
to encode both the visual graph and the textual graph,
to evaluate the importance of learning edge weights for
graph encoding.

• GNN for both image and text: we use a two-layer
self-attention GNN to encode both the visual and tex-
tual graphs. This variant is introduced to evaluate the

effectiveness of the combination of a self-attention GNN
and a GGNN on encoding the textual graph.

• GNN+GGNN for both image and text: we use the
combination of a self-attention GNN and a GGNN to
encode both the visual and textual graphs. This variant is
introduced to evaluate the effectiveness of the two-layer
GNN on encoding the visual graph.

• w/o graph decoders: we remove both the visual and
textual graph decoders to evaluate their effectiveness in
learning latent graph representations.

• w/o prior distribution: we replace the randomly sam-
pled reparametrized representation with the updated node
feature representations, in order to verify the importance
of modeling prior distribution in learning latent graph
representations.

• w/o cross-attention: we remove the cross-attention mod-
ule to evaluate its effectiveness in learning latent graph
representations.

The results are shown in Table III and we make the
following observations:

• “w/o graph” generally performs worst when compared
with other variants, since it dose not exploit the semantic
relationships between entities, which shows that modeling
entity relationships facilitates matching betwee images
and texts.

• The performance of “GCN for both image and text”
dramatically degrades compared with our method, which
clearly shows that it is important to learn the weights of
different neighborhoods by using self-attention GNN in
graph encoding.

• Our method achieves better results than “GNN for both
image and text”, showing that it is beneficial to encode
the textual graph by combining of a self-attention GNN
and a GGNN. The reason is that texts have the property
of sequence and GGNN is more suitable for updating
previous states in early iterations when encoding the text
data.
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TABLE III
ABLATION ANALYSIS OF DIFFERENT COMPONENTS ON THE FLICKR30K AND COCO 5K DATASETS

• Our method also achieves better results than
“GNN+GGNN for both image and text”, showing
that the two-layer GNN is more suitable for encoding
the image data.

• When removing the textual graph decoder and the visual
graph encoder in “w/o graph decoders”, the performance
drops, which indicates that the graph decoder acts as
a sieve to capture necessary information of input data,
encouraging the approximate posterior estimation more
accurate.

• “w/o prior distribution” achieves a slight drop in the
matching performance, probably due to the lack of regu-
larity of the learned latent space, leading to the decoding
of meaningless data.

• When removing the cross-attention module in “w/o
cross-attention”, the performance has a significant drop,
which shows the importance of building the interactions
between different modalities to promote learning the
cross-modality consistency.

2) Effect of Loss Function: To evaluate the impact of each
loss function, we compare our method with the following
variants.

• w/o Lg: we remove the loss function of the improved
graph variational autoencoder Lg to evaluate its effec-
tiveness, and we only use LW D and Lrank for training.

• w/o LW D: we remove the Wasserstein distance loss LW D
to evaluate whether aligning the distributions of latent
semantic representations across modalities is useful to the
quality of disentangled representations.

• replace LW D with LK D: we replace LW D with LK D to
evaluate the effectiveness of minimizing KL divergence
between the distributions of latent representations for both
modalities on learning latent graph representations.

Table IV reports the results on the Flickr30K and COCO
5K datasets. For “w/o Lg”, it is obvious that without the
supervision of the improved graph variational autoencoder loss
function, our method fails to disentangle the representations
in each modality. For “w/o LW D”, we observe that removing
Wasserstein distance loss results in relatively low performance,
which validates that the distance loss has a positive impact on
training the network and guides the model to make the projec-
tions of data points from the visual and textual modalities to

Fig. 3. Comparison of loss curves with different training strategies on the
Flickr30K dataset.

Fig. 4. Comparison results of different trade-off parameters on the Flickr30K
and COCO datasets.

be closer in the learned latent space. For “replace LW D with
LK D”, we observe that the performance usually degrades, due
to that our method easily suffers from KL-vanishing problem
by computing KL divergence between the distributions of
latent representations across modalities.

3) Effect of Training Strategy: To evaluate the effectiveness
of the proposed two-phase training strategy, we compare our
method with following variants.

• general two-phase training: we first pre-train the net-
work using the embedding loss λLg + LW D , and then
fine-tune it using the whole loss L.

• one-phase training: we train the network in one phase.

Table IV reports the results on the Flickr30K and COCO 5K
datasets. For “general two-phase training strategy”, we observe
that the matching performance degrades significantly. The
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TABLE IV
ABLATION ANALYSIS OF DIFFERENT LOSSES AND TRAINING STRATEGIES ON THE FLICKR30K AND COCO 5K DATASETS

Fig. 5. Top-5 qualitative results of image-to-text retrieval on the Flickr30K and COCO datasets. The ground-truth and mismatched sentences are in green
and red, respectively.

possible reason is that the condition of randomly sampled
latent distribution is unstable at the beginning of training, lead-
ing to a failure in learning a good common latent space. For
“one-phase training strategy”, it is obvious that our two-phase
training strategy significantly improves the matching perfor-
mance. Moreover, Fig. 3 demonstrates that the our training
strategy has a more apparent downward trend and reaches the
convergence state within 15 epoch.

4) Effect of the Hyperparameter λ: We evaluate the impact
of the trade-off hyperparameter λ in Eq. 16 by tuning its values
from {0.0001, 0.001, 0.01, 0.1, 1}. The results are shown in
Fig. 4. It is obvious that our method achieves the best
performance when λ = 1 on the two datasets.

F. Qualitative Results

1) Visualization of Image-Text Matching Results: To further
demonstrate the effectiveness of our method, we visualize
several examples of image-to-text retrieval results on the two
datasets in Fig. 5, where the correctly matched sentences are
shown in green and the unmatched ones are shown in red.
We also visualize several examples of text-to-image retrieval
in Fig. 6, where the true matches are shown in green boxes

while the mismatches are in red. Note that in our settings,
we rank the top-5 retrieval results according to the similarity
scores between images and sentences, where each image has
five corresponding sentences and each sentence has only one
corresponding image.

From Fig. 5, we observe that almost all the paired sentences
have been successfully retrieved by using our method, except
for the retrieved sentences in red at the bottom line that do not
correspond to the image, but are still semantically related to the
ground-truth sentence. As can be seen from Fig. 6, our method
completes accurate matching for almost all correct sentences,
owing to its ability of effectively reducing distractions and
decreasing the ranking of unmatched samples. For the second
example in Fig. 6 (b), we note that the query sentence
“A woman skier coming to a stop after her run down the gnarly
hill” whose corresponding top-1 retrieved image is wrong, but
its semantics are almost consistent with the correct image in
green.

2) Visualization of Distracting Factors: To gain deep
insights into the impact of distracting factors of entity rela-
tionships, we visualize several typical image-to-text retrieval
examples in Fig. 7. From these results, it is interesting to
observe that: (1) as shown in Fig. 7 (a), the “woman sitting”
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Fig. 6. Top-5 qualitative results of text-to-image retrieval on the Flickr30K and COCO datasets. The ground-truth and mismatched images are shown in
green and red boxes, respectively.

Fig. 7. Visualization of attention weights of each image region on image-text matching.

receives more visual attention than the other person, and the
“man sitting” attracts more than the pedestrian. Both the other
person and the pedestrian are irrelevant object regions and thus
create distractions on image-text matching. This demonstrates
that our method succeeds in reducing the distractions from
irrelevant object regions; (2) as shown in Fig. 7 (b), the
salient foreground regions get attention rather than rather
than the trivial background regions, verifying the advantage
of our method on reducing the distractions from irrelevant
background regions; (3) as shown in Fig. 7 (c), the words
“mother” and “caucasian” are invisible in images and obtain
less visual attention, demonstrating the ability of our method
on reducing the distractions from noisy words.

Overall, these retrieval examples suggest that our method
learns robust latent graph representations by reducing the
distractions of irrelevant or misleading information for image-
text matching.

3) Visualization of Latent Graph Representation Space:
To demonstrate the learned latent graph representation space,
we depict the T-SNE visualized results on the Flickr30K
dataset in Fig. 8. Specifically, Fig. 8 (a) shows the modality-
specific space, where the private representations (the repre-
sentations after taking readout operation on σ v and σ t ) within
each modality are learned. Fig. 8 (b) shows the latent space
where the latent representations (ev and et ) across modalities
are learned. It is interesting to observe that in the latent
representation space that the paired image and text are closer
to each other, demonstrating that the distracting factors are

Fig. 8. T-SNE visualized results of (a) modality-specific space and (b) latent
graph space on the Flickr30K test set. The orange points and gray points
denote the image and text, respectively.

effectively excluded to narrow the heterogeneity gap between
image and text.

V. CONCLUSION

We have presented an adaptive latent graph representa-
tion learning method for image-text matching. An improved
graph variational autoencoder is used to disentangle dis-
tracting factors for learning latent graph representations of
different modalities, achieving robust cross-modal matching.
An adaptive latent graph attention module is introduced to
focus more on salient and common representations of rela-
tionships, succeeding in narrowing the heterogeneous gap
between different modalities. We use a two-phase training
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strategy that can improve the discrimination of multi-modal
feature representation, thus further boosting the image-text
matching performance. In the future, we are going to extend
the latent graph representation learning method to the video-
text matching task.
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