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Abstract

Image-to-video adaptation leverages off-the-shelf learned
models in labeled images to help classification in unlabeled
videos, thus alleviating the high computation overhead of
training a video classifier from scratch. This task is very chal-
lenging since there exist two types of domain shifts between
images and videos: 1) spatial domain shift caused by static
appearance variance between images and video frames, and
2) temporal domain shift caused by the absence of dynamic
motion in images. Moreover, for different video classes, these
two domain shifts have different effects on the domain gap
and should not be treated equally during adaptation. In this
paper, we propose a spatial-temporal causal inference frame-
work for image-to-video adaptation. We first construct a
spatial-temporal causal graph to infer the effects of the spa-
tial and temporal domain shifts by performing counterfactual
causality. We then learn causality-guided bidirectional het-
erogeneous mappings between images and videos to adap-
tively reduce the two domain shifts. Moreover, to relax the
assumption that the label spaces of the image and video do-
mains are the same by the existing methods, we incorporate
class-wise alignment into the learning of image-video map-
pings to perform partial image-to-video adaptation where the
image label space subsumes the video label space. Extensive
experiments on several video datasets have validated the ef-
fectiveness of our proposed method.

Introduction

Video recognition has made promising progress in recent
years owing to the success of deep neural networks. Train-
ing deep video classifiers using large-scale labeled video
datasets usually requires high storage resource and in-
curs heavy computational loads. Moreover, it is a time-
consuming and labor-intensive process to annotate a large
amount of videos. On the other hand, the computational cost
of learning deep classifiers of images is much less and there
are also many existing labeled image datasets that can be
readily used. It would be highly beneficial to transfer knowl-
edge from images to videos. So the image-to-video adapta-
tion task has been proposed, which leverages off-the-shelf
learned models in labeled images (source domain) to help
recognition in unlabeled videos (target domain). This task
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is very challenging since there exist two types of domain
shifts: 1) spatial domain shift caused by static appearance
variance between images and video frames, and 2) temporal
domain shift caused by the absence of dynamic motion in
images.

A rich line of prior works attempt to reduce the spatial
domain shift by learning a common feature space between
images and video frames (Li et al. 2017; Ma et al. 2017;
Zhang et al. 2016; Gan et al. 2016b,a; Sun et al. 2015). To
reduce both spatial and temporal domain shifts, several re-
cent methods learn domain-invariant features between im-
ages and video clips via generative adversarial networks (Yu
et al. 2018, 2019), where the two domain shifts are treated
equally. It is a fact that for different video classes, the spatial
and temporal domain shifts play different roles in the adapta-
tion process. For example, some videos such as “pour” and
“kiss” contain very little dynamic motion information and
can be easily distinguished by key frames. In this case, the
static appearance is more important and the spatial domain
shift weighs more in the adaptation. Other videos such as
“jump” and “wave” have large variations in motion and the
temporal domain shift has the main effect on the adaptation.
Hence, it is critical and non-trivial to explore the effects of
the two domain shifts to adaptively reduce the two domain
shifts.

In this paper, we propose a spatial-temporal causal infer-
ence framework for image-to-video adaptation, which in-
fers the effects of the spatial and temporal domain shifts via
causal inference and adaptively reduces domain shifts via
causality-guided bidirectional heterogeneous mappings. We
build a spatial-temporal casual graph to infer the effects of
the two domain shifts during adaptation. The causal graph
has three nodes, including an appearance feature node A, a
motion feature node B and a video class label node Y. The
two edges A — Y and B — Y indicate that the appearance
feature A and the motion feature B together affect the class
label Y. The counterfactual causality is performed on this
graph to reveal the causal relationships among A, B and Y/
through the counterfactual thinking of “If I had not seen A or
B, would I still make the same Y ?7”” Our insight is to manipu-
late the value of node A or B to infer its effect on video clas-
sification by investigating what Y would be. Specifically, we
wipe out A and keep B untouched, and then obtain a coun-
terfactual Y that is contrary to the fact that both A and B



affect Y. The difference between the counterfactual Y and
the original Y (predicated from A and B) reflects the con-
tribution of A to the video classification, which is actually
the effect of the spatial domain shift. In a similar way, we
infer the effect of the temporal domain shift via constructing
a counterfactual Y by wiping out B and keeping A intact.

To adaptively reduce the two domain shifts, we learn
causality-guided bidirectional heterogeneous mapping be-
tween images and videos, including the image-to-video
mapping and the video-to-image mapping. The image-to-
video mapping maps the image feature to the video feature
space via adversarial learning. The image feature is coupled
with the inferred effects to attend to the spatial and temporal
shifts according to the contribution of the appearance and
temporal features to video classification, which automati-
cally balances different domain shifts during mapping. To
avoid mode collapse (Goodfellow et al. 2014), i.e., all the
image features are largely projected into a single data point
in the video feature space, an inverse video-to-image map-
ping is introduced to guarantee that image features mapped
into the video feature space can be projected back to their
original space.

Existing methods assume that the label spaces between
the source and target domains are the same. However, in
real-world applications, this assumption may not hold since
the classes of the target videos are unknown. To relax this
assumption, we perform partial image-to-video adaptation
where the target label space is a subspace of the source
label space. A class-wise alignment is proposed to match
conditional distributions of the source images and the tar-
get videos in learning image-video mappings, which ensures
that only the images and videos in the same class are aligned
with each other.

In summary, the contributions of this paper are as follows:

e We propose a spatial-temporal causal inference frame-
work for partial image-to-video adaptation, where a
spatial-temporal causal graph is built to infer the effects
of the spatial and temporal domain shifts.

e We propose causality-guided bidirectional heterogeneous
mappings to adaptively reduce the spatial and tempo-
ral domain shifts under the guidance of counterfactual
causality.

e We propose class-wise alignment to address partial
image-to-video adaptation, significantly enhancing the
ability to exploit images for video recognition.

Related Work

Image-to-video Adaptation

Many methods have been proposed to boost video recogni-
tion by leveraging images as auxiliary training data (Duan,
Xu, and Chang 2012; Wang, Wu, and Jia 2014; Gan et al.
2016b,a; Li et al. 2017; Ma et al. 2017). Li et al. (2017)
leverage labeled web images to train an adaptive classifier
for videos, where the video frames are mapped into a low-
dimensional feature space to reduce the domain gap between
images and video frames. In (Ma et al. 2017), video frames

and web images are combined to train a CNN model for ac-
tion recognition, and discriminative action poses in labeled
web images are utilized to highlight the discriminative por-
tions of videos. These methods attempt to reduce the spatial
domain shift between images and video frames. In contrast,
we focus on adaptively reducing both spatial and temporal
domain shifts via exploring the influences of the two domain
shifts by causal inference.

Recently, several methods (Yu et al. 2018, 2019) have
been proposed to reduce both spatial and temporal domain
shifts via learning a domain-invariant feature. Yu et al.
(2018) propose hierarchical GAN to learn the mapping from
video features to image features. In (Yu et al. 2019), they
further propose symmetric GAN for building bidirectional
mappings between video and image features to learn aug-
mented domain-invariant features. In (Liu et al. 2020), they
utilize video keyframes as a bridge to learn common fea-
ture space of images, video keyframes and videos. Different
from these methods that treat the two domain shifts equally,
our method explores how the two domain shifts affect the
adaptation and adpatively reduces them.

Moreover, the aforementioned methods are limited by the
fully shared label space assumption while our method re-
laxes this assumption and focuses on a more general and
practical setting, i.e., partial image-to-video adaptation.

Causal Inference

Incorporating causal inference (VanderWeele 2015) into
deep learning has attracted more and more attention. It
improves the explainability of the deep models and has
been explored in several fields, such as scene graph gen-
eration (Tang et al. 2020; Chen et al. 2019), image classi-
fication (Chalupka, Perona, and Eberhardt 2014; Lopez-Paz
et al. 2017), visual question answering (Chen et al. 2020)
and object detection (Wang et al. 2020). Tang et al. (2020)
present a novel scene graph generation framework to address
the biased training data for scene graph generation via coun-
terfactual causality. Lopez-Paz et al. (2017) propose a obser-
vational causal discovery technique to reveal the causal rela-
tionships between pairs of real entities in the world. Chen
et al. (2020) generate counterfactual training samples by
masking critical objects in images or words in questions,
which enable the visual question answer model to focus on
critical objects and words. Wang et al. (2020) propose a vi-
sual commonsense region-based network for object detec-
tion via causal intervention, which can learn sense-making
knowledge.

To the best of our knowledge, we are the first to intro-
duce causal inference into the domain adaptation task to rea-
son about the contributions of different domain shifts via
performing counterfactual causality on a spatial-temporal
causal graph.

Spatial-Temporal Causal Inference
Problem Definition

The goal of partial image-to-video adaptation is to learn a
target video classifier by adapting a source image classifier
trained on the labeled images. To bridge the source image
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Figure 1: Overview of our method. (a) Spatial-temporal causal graph. We conduct interventions do(A = A) and do(B = B) to
perform counterfactual thinking to infer the effects of the spatial and temporal domain shifts. (b) Causality-guided bidirectional
heterogeneous mappings. The image-to-video mapping G5 and the discriminator D are optimized by adversarial learning to
map source image features to the target video feature space with the guidance of counterfactual causality. The video-to-image
mapping G and the discriminator D, are optimized in a similar way.

domain and the target video domain, we propose a spatial-
temporal causal inference framework that first infers the ef-
fects of the spatial and temporal domain shifts via a spatial-
temporal causal graph and then adaptively reduces the two
domain shifts via causality-guided bidirectional heteroge-
neous mappings between images and videos. A class-wise
alignment is incorporated into the learning of the image-
video mappings to address the partial image-to-video adap-
tation. Figure 1 provides an overview of our method.

We are given a labeled source image domain Dg
{(z ;, TIRE °, } and an unlabeled target video domain D;
{:ct| 1}zl e X represents the appearance feature of
the i-th source image and y’ € Y is the class label of

x'. &} € X, is the concatenation of the appearance fea-
ture ] , and the motion feature a} , of the j-th target video.
The source feature space X’s is different from the target fea-
ture space Xy, i.e, Xs # AX;. The target label space ), is
a subspace of the source label space ). The classes in Vs
but not in ), are denoted as outlier classes, and the common
classes in ), and ); are denoted as shared classes. We use
k € {1,2,..., K} to denote the index of the class, where
K = )| is the number of source classes.

Spatial-Temporal Causal Graph

Causal graph (Pearl, Glymour, and Jewell 2016) is a directed
acyclic graph, represented as G = {N, £}, which indicates
how a set of variables A/ interact with each other through
the causal links £. Since the appearance feature and the mo-
tion feature together affect the video class label, we build
a spatial-temporal causal graph to model the causal rela-
tionships among the appearance feature, the motion feature
and the video class label, as shown in Figure 1(a). The node
A denotes the video appearance feature mi «» and the node

B denotes the video motion feature wt - The node Y de-
notes the video class label and is represented as the output

of the I-layer of Cy, formulated as y_; _; = Cl(x])

Tt,a Tt b

U[pd o d . e
Ci([xt,q: 1)), where Ypi i, 152 d-dimensional vector,

and C! is the I-layer of C;. The edge A — Y denotes predi-
cating the class label Y using the appearance feature A, and
the edge B — Y indicates predicating the class label Y us-
ing the motion feature B. The target classifier C; is used to
learn these edges via the conventional cross-entropy loss of
image labels y5 and image features that are mapped into X;.

We perform counterfactual causality (Roese 1997; Tang
et al. 2020) on the spatial-temporal causal graph to infer the
effects of the two domain shifts. Specifically, do(A = a) de-
notes that we assign a certain value a to the node A. Given a
video x{, we have A = z} ,, B = ] ;, and the output V" is

denoted as YA, g = y_s s .A counterfactual scene is de-
t,a’""t,b

fined by performing intervention on the appearance feature
to assess its effect, where the appearance feature is wiped
out by do(A = ®{ ,) and the node B is retained as the orig-

inal motion feature ] ,. The wiped-out appearance feature
A =T}, is set to a zero vector with the same dimension as

xia The output Y after intervention is denoted as a coun-
terfactual Y7 , = y— = ol which is counter to Y4 p. Itis

natural to infer the effect of the spatial domain shift on ;c?
by comparing the factual Y4 g and the counterfactual Y 5,

formulated as

SE(Q#) - YA’B - YZ*B - ywi,mmi,b N yiia»wi b (1
Similarly, we wipe out the motion feature by do(B = Eﬁb)

while keeping the node A as the original appearance feature
J ; — . )
x; o, and obtain the counterfactual Y, 5 = Yol 50, Then

the effect of the temporal domain shift on :ci is formulated
by

TE(xt) YA B — YA B ywj ,:l:t b ymt a’wt b (2)



We generate the effects of the two domain shifts for each

class by averaging the inferred effects SE(x] ) and TE(x] ),
formulated as

Ny
]_ .
Lo 3)
1 & :
TE. = % > Ly TE()),
t j=1

where SE}, and TEj denote the effects of the spatial and
temporal domain shifts of the k-th class, respectively, g]{ is
the pseudo label of ac{ , detailed in the Class-wise Alignment
section, and Nt’C is the number of videos classified into the
k-th class. Hgg’:k is an indicator function, meaning that if

gjg = k, the value of Hg){:k is 1 and O otherwise.

Causality-Guided Bidirectional Heterogeneous
Mappings

After inferring the effects of the spatial and temporal domain
shifts, our method learns causality-guided bidirectional het-
erogeneous mapping between images and videos to adap-
tively reduce the two domain shifts, including the image-
to-video mapping G5 : X; — A, and the video-to-image
mapping G, : X} — X.

The image-to-video mapping G maps the image fea-
ture x’ to the video feature space X; with the guidance of
the effects of the two domain shifts, formulated as &, =
G(x!,SE,:,TE,:, z), where SE,; and TE,; are the ef-
fects of the spatial and temporal domain shifts of the -
th class, respectively, and z is gussian noise to generate
the absent motion feature of image. The mapped image
feature @ is given by % = [& ,; @ ,], where & , =
G2([xl; SE,i]) is generated by a spatial module G and
&y, = Go([Z} ,; TE,;; 2]) is generated by a temporal mod-
ule G®.

To learn the image-to-video mapping G, a discriminator
Dy is constructed to distinguish the mapped image feature
&, from the video feature =], while G tries to generate &,
as similar as possible to 7. To optimize Gsand Dy, the ob-
jective function is formulated as

ncl;in max Ladaw(Gs, Ds) = Em{ (log Dg(mi))

. (4)
+Eg: <1og (1 — Dy (GS(:I:;, SEyg,TEyé,z)))).

The video-to-image mapping G, attempts to map the
video feature x] to the image feature space X, formu-
lated as @] = Gt(wi,SEgg,TEQZ). The mapped video
feature @ is generated via a cascade of a spatial mod-

ule G¢ and a temporal module G?, formulated as &) =

G¢ ( [m{va; Gi’([mib; TE@{]); SE@{] ) . A discriminator Dy is

built to distinguish the the mapped video feature ﬁ:i with the

image feature =%. G; and D, are optimized via adversrial
learning: min max Lq4, (Gy, Dy).
Gt Dt

For each image feature x’, we expect that its mapped im-
age feature @ in the video feature space can be mapped
back to the original image feature space via Gy, i.e., ., —
&, — G (¢, SE,:, TE,; ) ~ . Similarly, for each video
feature z}, we have &} — &) — G, (&7, SEy, TE;;{’Z> ~
x]. So we propose a cycle consistency loss defined by the
distance between the original feature x’ (resp. 7 ) and its
corresponding reconstructed feature G, (:%Q,SEyi,T Eyi)
(resp. G (&7, SEy, TEy, z)), formulated as

Ecyc(Gsv Gt) = Emg <HGt (ii’ SEZJZ7TEZJZ) - w78”2)

+E, (HGS(:i:i,SEQ{,TEm,z) . wg||2),

®)

where ||-||2 is the L2-loss to measure the distance of features.
To preserve the semantic information of features during
mapping, a semantic consistency loss is introduced to ensure
that the supervision information (i.e., class labels) in Dy to
be transferred to D;. Given an image feature =’ with its class
label 4, the class labels of the mapped image feature &,
and the reconstructed image feature G (:fc’g, SE,:,T Eyji)

should be the same as yg Therefore, the semantic consis-
tency loss is given by

K
£sem(037 Ct, Gs7 Gt) = Emz ( - Z Hk:yz 1Og CS(:B;))
k=1
K
+ By ( > Ly log G, (GS (@i, SE,, TE,, z)))
k=1

K
+ Eg: ( - Z Iy=yi log Cs (Gt (EB; SEy§7TEy§))>'
k=1
(6)

Class-wise Alignment

Through adversarial learning, the causality-guided bidirec-
tional heterogeneous mappings succeed in reducing the do-
main gap between source images and target videos in the
same label spaces. To relax the same label space assumption,
we perform partial image-to-video adaptation and propose
class-wise alignment to incorporate the learning of image-
video mappings for matching the conditional distributions of
the two domains. In this way, only the source image features
and target video features in the same class are aligned with
each other. As shown in Figure 1(b), the discriminators Dy
and D; are both constructed by K sub-discriminators, de-
noted as D¥ and DF, respectively, where k € {1,2,--- , K}
and K = |Ys|. The k-th sub-discriminator is responsible for
distinguishing the video features (resp. image features) and
the mapped image features (resp. mapped video features)
associated with the k-th class, which encourages the image-
video mappings to align the source image features and target
video features with respect to the class labels.



Since the class labels of videos are unknown, we intro-
duce a self-paced learning strategy to progressively generate
pseudo labels of videos, where the class probability is used
as prior knowledge to determine whether the target video is
used for training at the current time. We compute the class
probability p? of the video feature x by averaging the class
probabilities of randomly sampled video frames predicated
by C;. The pseudo label ¢/ of ] is then calculated by

= arg max (pi(k)) if max (pi(k)) > 7 D
0 otherwise,

where pg(k) is the k-th element of p{ and represents the
probability of assigning a:i to the k-th class, and 7 is the
threshold to filter out video features with low confidence in
the predicted class probabilities.

With the predicated pseudo label yg of w{, the objective
function of G4 and Dy is formulated by
r%isn Hba;X Ladv(Gs, Ds) =E i ( 25:1 Hk:@{ ( log Df(a)i)))

T T (=07)

By (ZkK1 D=y <10g (1 - DE(Gs (g, Sy, TEy;:=Z)))>>
®)

Similarly, the discriminator D; is constructed with K sub-
discriminators, denoted as Df . The adversarial loss of learn-
ing G and D is similar as Eq. (8).

Taken together, all the loss functions mentioned above
form the complete objective:

min max L(Gs, Gy, Cs,Cy, Ds, Dy)
{G37Gt7057ct} {Ds:Dt}

= Eadv(Gsst) +£adv(Gt7Dt) (9)
+ )\(Esem(CS7 Ct7 Gs; Gt) + Ecyc(G& Gt))7

where ) is a trade-off parameter.

Experiments
Datasets

We conduct experiments on two video benchmarks, i.e.,
UCF101 (U) (Soomro, Zamir, and Shah 2012) and
HMDBS51 (H) (Kuehne et al. 2011). With the UCF101
dataset as the target domain, we use the Standford40 (S)
dataset (Yao et al. 2011) as the source domain. With the
HMDBS51 dataset as the target domain, we use the EADs
(E) dataset (Yu et al. 2018) as the source domain. Therefore,
there are two partial image-to-video adaptation tasks: S—U
and E—H.

The UCF101 dataset contains 13,000 videos of 101 ac-
tion classes collected from YouTube. The HMDBS51 dataset
has 6,766 video clips of 51 action classes extracted from
commercial movies and public datasets. The Standford40
dataset contains 9, 532 images, collected from Google, Bing
and Flickr. It has 40 action classes and each action class has
180 to 300 images with large variations in human pose, ap-
pearance and background. The EADs dataset (Yu et al. 2018)
consists of the Standford40 and HIIT (Tanisik, Zalluhoglu,
and Ikizler-Cinbis 2016) datasets. It has 11, 504 images with
50 action classes. Each action class has at least 150 images.

For the S—U task, there are 12 shared classes between
the Standford40 and UCF101 datasets. We use all the im-
ages of the Standford40 dataset as the source domain and
the videos of 12 shared classes of the UCF101 dataset as
the target domain. For the E—H task, there are 13 shared
classes between the EADs and HMDBS51 datasets. All the
images of the EADs dataset are used as the source domain
and the videos of 13 shared classes of the HMDBS51 dataset
are used as the target domain. We use all the labeled source
images and unlabeled target videos for training.

Implementation Details

For the source images, we use ResNet-50 (He et al. 2016)
pre-trained on the ImageNet dataset (Deng et al. 2009) to
extract a 2048-dimensional vector from the pool5 layer as
the appearance feature. For the target videos, we use two-
stream I3D networks (Carreira and Zisserman 2017) pre-
trained on the Kinetics dataset (Kay et al. 2017) to extract
1024-dimensional optical flow and 1024-dimensional RGB
features that represent the motion and appearance informa-
tion of the videos, respectively.

We employ the Adam solver (Kingma and Ba 2015) with
the batch size of 16, including 8 source images and 8 target
videos. The trade-off parameter A in Eq. (9) is set to 100. The
dimension of the noise z is set to 1024. We set the threshold
7 in Eq. (7) as 0.5, as it achieves the best performance on
the two datasets. All the networks are trained from scratch
with 400 epochs. We keep the same learning rate for the first
200 epochs and linearly decay the rate to zero for the next
200 epochs. The initial learning rate of the S—U and E—H
tasks are set to 0.0001 and 0.00005, respectively. The code
is available at https://github.com/ChenJinBIT/HPDA.

Compared Methods

Our method addresses the new problem of partial image-to-
video adaptation where X; # X; and ), C V5. We com-
pare our method with traditional heterogeneous image-to-
video adaptation methods that make the fully shared label
space assumption (i.e., X5 # X; and s = );): Hierarchical
Generative Adversarial Networks (HIGAN) (Yu et al. 2018)
and Symmetric Generative Adversarial Networks (Sym-
GAN) (Yu et al. 2019). Our method is also compared with
partial homogeneous domain adaptation methods that re-
quire the same feature spaces of different domains (i.e.,
X; = Ay and Yy C Vs): ResNet (He et al. 2016), Importance
Weighted Adversarial Nets (IWAN) (Zhang et al. 2018),
Selective Adversarial Networks (SAN) (Cao et al. 2018a),
Partial Adversarial Domain Adaptation (PADA) (Cao et al.
2018b), Example Transfer Network (ETN) (Cao et al. 2019),
Adaptive Feature Norm (AFN) (Xu et al. 2019), and Univer-
sal Source-Free Domain Adaptation (USFDA) (Kundu et al.
2020).

For all the compared methods, we use ResNet-50 (He
et al. 2016) as the backbone which is pre-trained on the
ImageNet dataset. Note that ResNet, IWAN, SAN, PADA,
ETN, AFN and USFDA require images as input, and we take
source images and target video frames as input to train the
networks followed by (Yu et al. 2018, 2019). During test-



Method H P |S—U]|E—H
HiGAN (Yu et al. 2018) N 63.50 | 24.06
SymGAN (Yu et al. 2019) v 57.08 | 23.94
ResNet (He et al. 2016) v | 70.22 | 24.85
IWAN (Zhang et al. 2018) v | 7252 | 23.53
SAN (Cao et al. 2018a) v | 73.00 | 28.00
PADA (Cao et al. 2018b) v | 70.50 | 32.80
ETN (Cao et al. 2019) v | 80.10 | 26.50
AFN (Xu et al. 2019) v | 84.63 | 29.59
USFDA (Kundu et al. 2020) v | 84.38 | 25.00
Our method v v | 95.15 | 52.66

Table 1: Classification accuracies (%) on the S—U and
E—H tasks. H and P indicate the heterogeneous feature
spaces and the partial label spaces between images and
videos, respectively.

ing, the decision scores of the video frames are averaged to
determine the final class label of the video.

Results

Table 1 shows the classification accuracies of different meth-
ods on both S—U and E—H tasks. The first part shows the
results of traditional heterogeneous image-to-video adapta-
tion methods, and the second part shows the results of partial
homogeneous domain adaptation methods. From the results,
we have several interesting observations as follows.

Our method achieves much better performance than tra-
ditional heterogeneous image-to-video adaptation methods,
probably due to the following reasons. First, our method in-
fers how the spatial and temporal domain shifts affect the
adaptation via causal inference to adaptively reduce the two
domain shifts via causality-guided image-video mappings,
instead of treating the two domain shifts equally. Second,
the class-wise alignment incorporated into the learning of
image-video mappings effectively matches the conditional
distributions of the source and target domains, thus avoiding
the false alignment of source images in the outlier classes
and target videos.

Our method performs much better than partial homoge-
neous domain adaptation methods. The reasons are as fol-
lowings. First, our method maps the image feature to the
video feature space under the guidance of the inferred effect
of the spatial domain shift which reflects the causal relation-
ships in video classification. Second, the motion informa-
tion is captured by learning bidirectional image-video map-
pings between heterogeneous feature spaces. In contrast, the
partial homogeneous domain adaptation methods represent
videos as a bag of images, thus ignoring the dynamic motion
information in videos.

Ablation Studies

To better understand the effect of each component, we con-
duct ablation experiments on both S—U and E—H tasks,
as shown in Table 2. Our method is compared with sev-
eral variations: without effects inferred by causal inference
(“w/o causality”), without the effect of the spatial domain

Method S—U | E=H
w/o causality 90.74 | 43.79
w/o spatial causality 91.92 | 48.40
w/o temporal causality 93.85 | 45.33
w/o bidirection 43.13 | 38.05
w/o cycle consistency 34.80 | 32.96
w/o semantic consistency | 94.16 | 48.93
w/o self-paced learning 93.69 | 48.34
Our method 95.15 | 52.66

Table 2: Classification accuracies (%) of ablation studies on
both S— U and E—H tasks.

shift (“w/o spatial causality”), without the effect of the tem-
poral domain shift (“w/o temporal causality’’), without the
video-to-image mapping (‘“w/o bidirection”), without the cy-
cle consistency loss (“w/o cycle consistency”), removing the
third term from Eq.(6) (“w/o semantic consistency”), and
without self-paced learning (“w/o self-paced learning”).

From Table 2, it is noteworthy to make several observa-
tions. First, our method achieves 4.41% and 8.87% gains
over “w/o causality” on the S—U and E—H tasks, respec-
tively, and also outperforms “w/o spatial causality” and
“wlo temporal causality”. This clearly demonstrates that
both the spatial and temporal domain shifts should be in-
ferred to boost the performance and explainability of image-
to-video adaptation. Second, when removing the video-to-
image mapping (“w/o bidirection”) or the cycle consis-
tency loss (“w/o cycle consistency”), the classification ac-
curacies substantially degrade due to the problem of model
collapse, which validates the effectiveness of bidirectional
image-video mappings for heterogeneous domain adapta-
tion. Third, our method outperforms “w/o semantic consis-
tency”, showing that it is beneficial to capture the semantic
information during mapping. Finally, “w/o self-paced learn-
ing” works worse than our method, which clearly verifies the
benefit of progressive matching between target video fea-
tures and source image features on reducing the misclassifi-
cation of target video features.
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Figure 2: Quantified effects of the spatial and temporal do-
main shifts on the E—H task. The blue and orange bars de-
note the effects of the spatial and temporal domain shifts,
respectively. The horizontal axis is the target video classes
and the vertical axis is the value of the quantified effect.



Method pour kiss push | hug | climb | drink | kick clap run smoke | talk | jump | wave Avg
w/o causality | 69.23 | 76.85 | 37.20 | 0.00 | 33.77 | 43.85 | 71.57 | 80.19 | 45.69 | 43.10 | 23.85 | 50.83 | 0.00 | 43.79
Our method 77.69 | 87.04 | 44.51 | 6.78 | 31.13 | 58.46 | 83.33 | 86.79 | 48.28 | 50.86 | 58.72 | 54.17 | 10.58 | 52.66
Table 3: Classification accuracies (%) of “w/o causality” and our method for each class on the E—H task.
Shared classes N 4 Video(target) Shared classes » Video(target) Shared classes i » Video(target)
mm Archery R + Image(source)| |mmArchery 4 é‘ + Image(source)| |wm Archery @' + Image(source)
Cut in kitchen : Cut in kitchen % 3 Cut in kitchen
== Mop floor %"‘% == Mop floor " == Mop floor
= Row o 3%,; + = Row } & = Row
e TR % & e, e o8,
A g WGt
Outlier classes S Outlier classes E * Outlier classes ‘ ﬁ%
Jump Jump 3 Jump %
s Fix a bike s Fix a bike w Fix a bike
mm Push a cart mm Push a cart mm Push a cart
mm Use a computer = Use a computer mm Use a computer

(a) Original

(b) w/o causality

(c) Our method

Figure 3: Feature visualization on the S—U task. “A” and “ + ” denote the target video feature and the source image feature,
respectively. Different colors denote different classes as shown in the legend.

Causality Analysis

To further analyze the effectiveness of casual inference, we
report the classification accuracies of “w/o causality” and
our method for each class on the E—H task in Table 3, and
illustrate the effects of the two domain shifts quantified by
entropy in Figure 2.

From results in Table 3, it is interesting to observe that
our method outperforms “w/o causality” not only in motion-
light classes (8.46% gains on “smoke”, 10.19% gains on
“kiss” ) but also on motion-rich classes (10.58% gains on
“wave” and 3.34% gains on “jump”). The promising perfor-
mances validate the effectiveness of counterfactual causal-
ity on revealing the causal relationships in image-to-video
adaptation.

In Figure 2, the larger quantified effect of the spatial do-
main shift (blue bars) indicates that the spatial domain shift
is more critical to adaptation, and the large quantified effect
of the temporal domain shift (orange bars) indicates that the
temporal domain shift is more important. From the results,
we observe that the learned effects correctly reflect the im-
portance of different domain shifts. For example, “wave”
has a larger quantified effect of the temporal domain shift
than “smoke” since videos of “wave” contain more motion
information than videos of “smoke”, and the temporal do-
main shift in “wave” needs much more attention than that in
“smoke”. This shows that our spatial-temporal causal graph
can infer the contributions or weights of the spatial and tem-
poral domain shifts for image-to-video adaptation.

Feature Visualization

To further evaluate the effectiveness of the causality-guided
bidirectional heterogeneous mappings, we visualize the dis-
tributions of the original features (“original”), the learned
features by image-video mappings without causal infer-
ence (“w/o causality”) and the learned features by image-
video mappings with causal inference (“Our method”) in
the video feature space on the S—U task, as shown in Fig-

ure 3(a), 3(b) and 3(c), respectively. For clarity, we visualize
four shared classes and four outlier classes using t-SNE em-
beddings (Donahue et al. 2014).

From Figure 3, we make several interesting observations.
First, there is a large domain gap between the two domains
as shown in Figure 3(a), and even some source image fea-
tures and target video features of the same class fall into dif-
ferent clusters. Second, our method aligns the learned source
image features with the target video features better than “w/o
causality” owing to the guidance of counterfactual causality.
Third, in Figure 3(c), the learned source image features in
the shared classes are aligned with the target video features,
clearly demonstrating that our method can successfully re-
duce the heterogeneous domain shift. The learned source
image features in the outlier classes are not aligned with the
target video features, validating the superiority of class-wise
alignment to avoid the false alignment of the target classes
with the outlier classes.

Conclusion

We have presented a spatial-temporal causal inference
framework for partial image-to-video adaptation. The pro-
posed spatial-temporal causal graph can help infer how the
spatial and temporal domain shifts affect the adaptation via
counterfactual causality. With the guidance of the effects of
the two domain shifts, the learned causality-guided bidirec-
tional heterogeneous mappings can succeed in adaptively re-
ducing the two domain shifts and enhancing the explainabil-
ity of the image-to-video adaptation. The class-wise align-
ment incorporated in the image-video mappings is capable
of alleviating the false alignment of the target classes and
outlier classes by matching the conditional distributions of
the two domains. Extensive experiments on two benchmark
datasets have validated the effectiveness of our method.
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