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Cross-Domain Image Captioning via Cross-Modal
Retrieval and Model Adaptation

Wentian Zhao, Xinxiao Wu , Member, IEEE, and Jiebo Luo

Abstract— In recent years, large scale datasets of paired
images and sentences have enabled the remarkable success in
automatically generating descriptions for images, namely image
captioning. However, it is labour-intensive and time-consuming
to collect a sufficient number of paired images and sentences
in each domain. It may be beneficial to transfer the image
captioning model trained in an existing domain with pairs of
images and sentences (i.e., source domain) to a new domain with
only unpaired data (i.e., target domain). In this paper, we pro-
pose a cross-modal retrieval aided approach to cross-domain
image captioning that leverages a cross-modal retrieval model
to generate pseudo pairs of images and sentences in the target
domain to facilitate the adaptation of the captioning model.
To learn the correlation between images and sentences in the
target domain, we propose an iterative cross-modal retrieval
process where a cross-modal retrieval model is first pre-trained
using the source domain data and then applied to the target
domain data to acquire an initial set of pseudo image-sentence
pairs. The pseudo image-sentence pairs are further refined
by iteratively fine-tuning the retrieval model with the pseudo
image-sentence pairs and updating the pseudo image-sentence
pairs using the retrieval model. To make the linguistic patterns
of the sentences learned in the source domain adapt well to the
target domain, we propose an adaptive image captioning model
with a self-attention mechanism fine-tuned using the refined
pseudo image-sentence pairs. Experimental results on several
settings where MSCOCO is used as the source domain and five
different datasets (Flickr30k, TGIF, CUB-200, Oxford-102 and
Conceptual) are used as the target domains demonstrate that
our method achieves mostly better or comparable performance
against the state-of-the-art methods. We also extend our method
to cross-domain video captioning where MSR-VTT is used as
the source domain and two other datasets (MSVD and Charades
Captions) are used as the target domains to further demonstrate
the effectiveness of our method.

Index Terms— Cross-domain image captioning, cross-modal
retrieval, model adaptation.

I. INTRODUCTION

AUTOMATICALLY generating natural language descrip-
tions for images, i.e. image captioning, has attracted

much attention in recent years. Different from other computer
vision tasks, image captioning is a multi-modal learning task
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that requires both understanding the visual information in the
image and generating natural language descriptions that are
semantically coherent and syntactically correct. Image caption-
ing can be applied to many scenarios, including content-based
image retrieval, visual question answering and visual
dialog.

Inspired by the great success of deep neural networks
in computer vision [1] and the remarkable performance of
encoder-decoder framework in machine translation, many
recent studies [2], [3] [4] employ the encoder-decoder frame-
work based on deep neural networks for image captioning,
where a convolutional neural network (CNN) serves as the
encoder to encode the input images and a recurrent neural
network (RNN) is used as the decoder to generate descriptions
for the images. However, these image captioning models are
trained in a supervised learning scheme that requires large
scale image captioning datasets consisting of image-sentence
pairs, such as MSCOCO [5] and Flickr30k [6]. Given a
new domain, such a supervised learning scheme would be
difficult to implement since it is costly to annotate each image
with a corresponding sentence. In the mean time, unpaired
multimedia data is easy to acquire from the web, including
images and text descriptions. Therefore, it would be beneficial
to transfer an image captioning model trained in an existing
source domain with paired images and sentences to a new
target domain with unpaired data, referred to as cross-domain
image captioning [7].

In the task of cross-domain image captioning, we are given a
source domain with image-sentence pairs and a target domain
with unpaired images and sentences. Our goal is to adapt an
image captioning model trained on the source domain to the
target domain, i.e. the adapted captioning model can describe
the images in the target domain by generating sentences that
are similar to the sentences in the target domain. It is a chal-
lenging task since there exists a large gap between the source
and the target domains. This domain gap is not only caused
by the appearance variance between source and target images,
but also caused by the linguistic difference between source
and target domain sentences. For example, as shown in Fig. 1,
the source domain (MSCOCO) contains images about realistic
scenes as well as the corresponding sentences that describe
the salient objects and their relationships. Different from the
source domain, the images in the target domain (CUB-200)
are about flowers, and the sentences describe the appearance
of the flowers in detail. Moreover, the image-sentence pairs are
not available in the target domain, further making it difficult
to adapt the captioning model to the target domain.
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Fig. 1. An example of the images and sentences in the source
domain (MSCOCO) and target domain (Oxford-102). The images and sen-
tences in MSCOCO describe realistic scenes, while the images and sentences
in Oxford-102 mainly focus on the details of flowers.

In this paper, we propose a novel cross-domain image
captioning approach that couples an adaptive image captioning
model with a cross-modal retrieval model. The cross-modal
retrieval model guides the adaptation of the image captioning
model by generating pseudo image-sentence pairs in the
target domain. Specifically, we propose an iterative process
to discover and refine the pseudo image-sentence pairs. The
retrieval model is first pre-trained using the paired data in
the source domain to provide a good initialization for the
iterative process. The retrieval model is then applied to the
unpaired target domain data to generate an initial set of pseudo
image-sentence pairs. The initial pseudo image-sentence pairs
are further refined by iteratively performing the following
two steps: fine-tuning the retrieval model with the pseudo
image-sentence pairs, and using the fine-tuned retrieval model
to update the pseudo image-sentence pairs. Finally, the refined
pseudo image-sentence pairs are used to adapt the image
captioning model to the target domain.

In cross-domain image captioning, the sentences in the
source domain and the target domain may follow different
patterns, which causes difficulty for the adaptation process
of the language model. To address this issue, we design an
adaptive image captioning model based on a variant of a
two-layer LSTM, which better adapts to the language patterns
in the target domain. Specifically, two groups of parameters
are devised for a traditional LSTM to capture the linguis-
tic patterns of the source and target sentences, respectively.
With a self-attention module, the adaptation of the language
model is implemented by automatically adjusting the corre-
sponding attention weights of the source and target linguistic
patterns.

The contributions of this paper are summarized as follows:
• We propose a cross-modal retrieval guided approach to

cross-domain image captioning. The adaptation of the
image captioning model is facilitated by the pseudo
image-sentence pairs discovered and iteratively refined by
a cross-modal retrieval model.

• We propose an adaptive language LSTM that can be
effectively adapted from the source domain to the target
domain by learning transferable linguistic patterns of the
sentences.

• Our method outperforms the state-of-the-art methods
across five diverse settings between MSCOCO and other
publicly available datasets.

The remainder of this paper is organized as follows.
Section II discusses the related work. In Section III, our pro-
posed method is described in detail. In Section IV, we present
the experimental settings and the results. Section V makes a
conclusion and discusses the future work.

II. RELATED WORK

A. Image Captioning

Existing image captioning methods can be roughly divided
into two categories: traditional machine learning based meth-
ods and deep learning based methods. Traditional machine
learning based methods generate captions by either completing
pre-defined sentence templates [8], [9] or retrieving existing
captions [10]. However, traditional machine learning based
methods suffer when generalizing to new images since these
methods rely heavily on existing templates or sentences.

In recent years, deep learning based image captioning meth-
ods have been extensively studied with superior performance
to the traditional methods. Most deep learning based methods
[2], [3], [11] follow the encoder-decoder framework, where a
CNN is employed as the encoder to extract the vector represen-
tation of the input image, and an RNN is used as the decoder to
generate word sequence according to the vector representation
of the image. Several different attention mechanisms [12]–[14]
are proposed to further improve the performance of the
encoder-decoder framework. In [13], a two-layer LSTM net-
work is proposed where the first layer calculates the attention
weights for different image regions, and the second layer
outputs the probability of each word according to the attended
image regions. Some methods [15]–[17] attempt to model the
relationship between the objects in the images using scene
graphs. Motivated by the recent progress in natural language
processing, the Transformer model [18] is also applied to
image captioning [19], [20]. Feng et al. [21] first introduce
a new paradigm of unsupervised image captioning, where
the image captioning model is trained using unpaired image
set and sentence corpus. Several subsequent methods explore
using scene graph alignment [22], shared embedding space
[23] or memory network [24] to learn from unpaired images
and sentences.

These encoder-decoder based models are optimized with
the cross-entropy loss function. However, these models are
evaluated with non-differentiable metrics including Bleu [25],
METEOR [26], ROUGE_L [27] and CIDEr [28], which
are inconsistent with the cross-entropy loss. In addition,
the models trained with the cross-entropy loss suffer from
the exposure bias [29] problem. To address the above issues,
reinforcement learning is applied in some methods [7], [30]
[31]. For instance, [30] proposes to optimize the image
captioning model using the REINFORCE algorithm with an
estimated baseline. The above mentioned methods follow a
fully-supervised training scheme, which requires large scale
image captioning datasets consisting of image-sentence pairs.

Recently, domain adaptation has also been applied to image
captioning. Several methods [32], [33] aim to describe the
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objects that are absent in the training data, which is referred
to as novel object captioning. Other methods use unpaired
images and sentences in the target domain for cross-domain
image captioning. An adversarial training procedure is
proposed in [7] for cross-domain image captioning model.
Two different critics, namely the domain critic and the
multimodal critic, serve as the discriminators and the image
captioning model serves as the generator. [34] and [35]
propose a dual-learning mechanism to learn the knowledge
in unpaired images and sentences, which consists of an
image captioning model and an image synthesis model. In
these methods, image captioning and image synthesis are
simultaneously optimized via the dual learning mechanism,
which could enhance the performance of image captioning
in the target domain. Different from the aforementioned
methods that utilize unpaired images and sentences in the
target domain separately, our method exploits the intrinsic
semantic correlation between images and sentences in the
target domain with the help of a cross-modal retrieval model.]

B. Cross-Modal Retrieval

The task of cross-modal retrieval focuses on retrieving the
most relevant instances in one modality for the query in
another modality. Existing cross-modal retrieval methods can
be generally divided into binary representation learning meth-
ods and real-valued representation learning methods. Binary
representation learning is also termed as cross-modal hashing,
which aims to map the representation of samples in different
modalities into a common Hamming space [36]–[39]. Real-
valued representation learning methods expect to learn a com-
mon latent space where the distance of samples in different
modalities can be directly measured [40]–[42]. According to
the information utilized to learn the common latent space,
the real-valued retrieval methods can be further categorized
as: (1) supervised methods that utilize the label information
[43], (2) unsupervised methods that learn from co-occurrence
information [40]–[42], [44], (3) rank based methods that utilize
the rank lists, and (4) pairwise based methods that learn from
similar sample pairs in different domains. The cross-modal
retrieval method involved in our framework belongs to the
unsupervised methods.

In recent years, the task of natural language moment
retrieval has attracted more and more attention. Given an
untrimmed video and a natural language query, this task
focuses on retrieving the video segments that are most relevant
to the query. The pioneer of such methods [45] learn to
project the video segments and the language queries to a
common embedding space. To fully exploit the relationship
between natural language and visual content, an iterative graph
adjustment method [46] as well as the methods that fuse
visual and textual features using cross-modal interaction mod-
ules [47]–[49] are proposed. Most recently, Chen et al. [50]
propose to conduct fine-grained video-text matching by first
constructing hierarchical semantic role graphs for sentences
and then reasoning over the graph. Some moment retrieval
methods [51], [52] attempt to utilize the weakly annotated
data, i.e. the training data only contains pairs of untrimmed
videos and video-level sentence annotations and the temporal

boundary of the video segments are unknown. Compared to the
existing cross-modal retrieval methods that are trained using
the image-sentence pairs, the cross-modal retrieval model in
our method utilizes both the image-sentence pairs in the
source domain and the unpaired images and sentences in the
target domain. With the help of an iterative refining process,
the retrieval model is able to discover the semantic correlation
between the images and sentences in the target domain.

C. Visual Question Answering

Visual question answering (VQA) is an important research
topic in the field of vision and language. It aims at answer-
ing questions about visual content, including images [53],
videos [54]–[57] or personal albums [58]. To answer complex
questions that require effective reasoning, some methods [53],
[59] incoporate external knowledge into VQA models. The
inverse visual question answering (iVQA) task [60], which
focuses on generating reasonable questions for image-answer
pairs, is proposed to diagnose the existing VQA models. Both
image captioning and the iVQA task take images as input and
generates natural language. However, image captioning aims
at describing the salient objects and their relationships in the
image, while the output of iVQA is conditioned on both the
image and the answer.

Most recently, some methods [61], [62] attempt to narrow
the modality gap between visual content and natural lan-
guage questions by generating dense image captions using
pre-trained captioning models. However, the domain gap
between the dense captioning dataset used for pre-training
and the VQA dataset may affect the quality of the generated
sentences and degrade the VQA model’s performance. For
instance, in [62], the appearance of images in Visual Genome
significantly differs from the video frames in the TVQA
dataset. In this case, it is favorable to adapt a pre-trained
captioning model to the existing VQA datasets, since the
adapted model generates sentences of higher quality without
using additional paired caption annotations.

III. OUR METHOD

A. Problem Formulation

For the cross-domain image captioning, we are given the
source domain data Ds = {(xs

i , ys
i )|i } with xs

i representing
the i-th image and its corresponding sentence ys

i describing
xs

i . Let Is = {xs
i |i } and Ss = {ys

i |i } denote the source image
set and the source sentence set, respectively. In the target
domain, we are given two separate sets: a set of images
It = {xt

i |i } and a set of sentences St = {yt
i |i }. Each sentence

y with length T is represented by a sequence of words,
i.e., y = [w1, w2, . . . , wT ]. The vocabulary used by the
captioning model is defined by Vs,t = {w|w ∈ y, y ∈ Ss ∪ St }
that contains the words in the source domain as well as the
words in the target domain.

B. Overview

To leverage the unpaired images and sentences in the target
domain, we propose a novel approach consisting of an adaptive
image captioning model and a cross-modal retrieval model.
These two models are first pre-trained using the paired data
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Fig. 2. Overview of the proposed method. The left part illustrates the cross-modal retrieval model, and the right part illustrates the adaptive LSTM model.
The refined pseudo image-sentence pairs generated by the retrieval model guides the adaptation process of the adaptive LSTM model.

Ds in the source domain. We then acquire a set of pseudo
image-sentence pairs in the target domain using an iterative
algorithm. In the i -th iteration, the cross-modal retrieval model
is applied to the unpaired target domain data to obtain pseudo
image-sentence pairs D̂i

t . The pseudo image-sentence pairs are
used to fine-tune the retrieval model, which is applied to the
target domain data in the next iteration. Finally, the adaptive
image captioning model is fine-tuned using the final pseudo
image-sentence pair set, denoted as D̂K

t . An overview of our
proposed model is shown in Fig. 2.

C. Cross-Modal Retrieval Model
Our cross-modal retrieval first maps both the images and the

sentences to fixed-dimension vectors. Let ŝx and ŝy denote the
feature representations of image x and sentence y, respectively.
We use the Resnet-101 model pre-trained on ImageNet to
encode the image x into a 14 × 14 × 512 feature map that
contains L vectors, where L = 196. We denote these feature
vectors as F = {v1, v2, . . . vL}, where vi ∈ R

D and D = 512.
Each feature vi corresponds to an image region divided by
a 14 × 14 grid. The sentence y = [w1, w2, . . . , wT ] is first
embedded into a sequence of vectors [e1, e2, . . . , eT ] with
a word embedding matrix Wr

e, and the word embeddings
are then used as the input of a single-layer gated recurrent
unit (GRU) network. The output of the GRU network at the
last time step is used as the feature representation ŝy of the
sentence.

In order to establish the connection between the source
domain and the target domain, we propose domain-shared
latent attributes to learn the common representation between
the two domains. The images and sentences in the target
domain are represented by both the domain-shared latent
attributes and the domain-specific latent attributes that only
appear in the target domain. We represent each latent
attribute using a dictionary atom. In the pre-training process,
the retrieval model learns the domain-shared attributes by
reconstructing the features of the source domain images and
sentences using the linear combinations of the dictionary
atoms. In the model adaptation process, the retrieval model

only has to learn the domain-specific attributes by recon-
structing the images and sentences in the target domain. We
use a dictionary Ms,i ∈ R

d×n with n atoms to encode the
attributes in the source domain images, and another dictionary
M t,i ∈ R

d×n is used to encode the domain-specific attributes
in the target domain images. The process of reconstructing the
feature of the source domain image xs can be formulated as

α̂s = M�
s,i W i ŝxs ,

αs = softmax(Oαs),

sxs = Ms,i α̂, (1)

where W i ∈ R
d×d is a mapping matrix and αs ∈ R

n

denotes the weights of the dictionary atoms. The feature sys

of the source domain sentence ys is reconstructed in a similar
manner with another dictionary Ms,s ∈ R

d×n . The process of
reconstructing the feature of a target domain image xt can be
formulated as

α̂t = [Ms,i; M t,i ]�W i ŝxs ,

αt = softmax(Oαt),

sxt = [Ms,i; M t,i ]α̂, (2)

where αt ∈ R
2n denotes the weights of dictionary atoms in

the joint dictionary of Ms,i and M t,i , and the operator [; ]
denotes matrix concatenation. The feature syt of target domain
sentence yt is reconstructed with two dictionaries, namely
Ms,s and M t,s ∈ R

d×n . We calculate the similarity between
the image x and the sentence y using the reconstructed
features:

sim(x, y) = sx · sy

‖sx‖ · ‖sy‖ , (3)

where the operator ‖ · ‖ denotes the l2 norm of vectors.
During pre-training, the source domain dictionaries and the
mapping matrices θ r

s = {Ms,i , Ms,s, W i , W s} are learned. In
the fine-tuning process, the source domain parameters θ r

s are
fixed and the target domain dictionaries θ r

t = {M t,i , M t,s} are
updated to learn the target domain attributes.
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D. Adaptive Image Captioning Model

An adaptive image captioning model based on the
encoder-decoder framework is proposed to bridge the gap
between different domains. Since the source domain sentences
differ from the target domain sentences in many aspects
(e.g. the word usage and the syntactic structure), it is crucial
for the captioning model to transfer the linguistic patterns
learned in the source domain to the target domain. To this
end, we design an adaptive captioning model that encodes
the knowledge about the sentences in the two domains using
two groups of parameters and weighs these parameters for
knowledge adaptation with the help of an attention mechanism.

Inspired by [13], we devise a new variant of a two-layer
LSTM as the decoder to generate sentences. The first LSTM
layer acts as a visual attention model to weigh each feature.
The second LSTM layer is characterized as an adaptive
language model to transfer the language patterns learned in
the source domain to the target domain.

The input to the visual attention LSTM at each time step
t is the concatenation of the previous output of the adaptive
language LSTM, an encoding of the average-pooled image
feature v̄ = 1

L

∑L
i=1 vi and an encoding of the previously

generated word:
x1

t = [h2
t−1; Wc

x v̄ + bc
x ; W c

e �t−1], (4)

where Wc
x ∈ R

H×D and bc
x ∈ R

H×1 denotes the weight
and bias of the linear transform applied to v̄. Wc

e represents
the word embedding matrix and �t−1 is a one-hot vector
representing the previously generated word. The output of the
visual attention LSTM is given by

h1
t = LSTM1(h1

t−1, x1
t ). (5)

At each time step t , the normalized weight αi,t for each
image feature vi is generated by

α̂i,t = ωa tanh(W vavi + Wha h1
t )

αi,t = exp( ˆαi,t )∑L
j=1 exp( ˆα j,t )

, (6)

where ωa ∈ R
1×H , W va ∈ R

H×D and Wha ∈ R
H×H are

learned parameters. The weighted sum of the image features
v̂t = ∑L

i=1 αi,t vi and the output h1
t of the visual attention

LSTM are concatenated as the input to the adaptive language
LSTM:

x2
t = [h1

t ; v̂t ]. (7)

The output of the adaptive language LSTM is given by

h2
t = LSTM2(h2

t−1, x2
t ). (8)

Different from the language LSTM in the Top-Down model
[13], our adaptive language LSTM incoporates two groups of
parameters to capture the knowledge from the sentences in
the source domain and the target domain. Specifically, two
groups of weight matrices, denotede by {W x∗} and {U x∗},
are designed to learn the linguistic patterns of the sentences
in the source domain and the target domain, respectively.
An additional attention mechanism calculates the weights gt

and 1 − gt for these parameters at the t-th time step, where
gt ∈ (0, 1). The t-th word in the sentence is more likely to be
related to the linguistic patterns of the source domain sentences
when the value of gt is close to 0, and vice versa. Compared
to the top-down attention mechanism that is used to attend
to the crucial parts of images, the attention mechanism in
the adaptive LSTM determines whether the model should use
more knowledge from the source domain or the target domain
when predicting a word. Formally, the adaptive language
LSTM is defined as

i = sigmoid((gt W xi + (1 − gt )U xi )x2
t + Whi h2

t−1 + bi )

f = sigmoid((gt W x f + (1 − gt )U x f )x2
t + Wh f h2

t−1 + b f )

o = sigmoid((gt W xo + (1 − gt )U xo)x2
t + W hoh2

t−1 + bo)

ĉt = tanh((gt W xc + (1 − gt )U xc)x2
t + Whch2

t−1 + bc)

ct = f � ct−1 + i � ĉt

ht = o � tanh(ct ), (9)

where � denotes element-wise multiplication, the parameters
θ c

s = {W i∗, W h∗, b∗} represent the source domain language
LSTM and the parameters θ c

t = {U i∗, W i∗, Wh∗, b∗} repre-
sent the target domain language LSTM. The attention weight
gt is calculated by

ĝt = ReLU(W g1ht−1 + bg1)

gt = sigmoid(W g2 ĝt + bg2). (10)

Note that at each time step t , the value of gt is different.
During pre-training, the value of gt is fixed to 1 and the
parameters θ c

s = {W i∗, Wh∗, b∗} are learned. The parameters
θ c

t = {U i∗, W i∗, W h∗, b∗} as well as the parameters W g∗, bg∗
in the attention submodule are learned in the process of
fine-tuning. Intuitively, θ c

s captures the semantic relationship
between images and words, while θ c

t learns the specific
linguistic pattern in the target domain.

Finally, the probability of words in the vocabulary at time
step t is calculated as

p(wt |w1, w2, . . . , wt−1) = softmax(W p h2
t + bp), (11)

where W p and bp represent the learned parameters.

E. Model Pre-Training

In the process of model pre-training, the cross-modal
retrieval model and the adaptive image captioning model are
trained using the paired training data in the source domain
by maximizing the probability of the ground truth captions
and minimizing the distance between the images and the cor-
responding sentences, respectively. Given an image x and its
corresponding ground truth sentence y = [w1, w2, . . . , wT ],
the captioning model with parameters θ c is optimized by
minimizing the cross-entropy loss function:

Lc = −
L∑

t=1

log pθc(wt |w1, w2, . . . , wT −1). (12)

When training the cross-modal retrieval model, we con-
sider negative samples that are the most similar to the
queries, namely hard negatives, following the practice in [42].
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In the two processes of querying images with sentences and
querying sentences with images, the hard negative samples
are given by x ′ = argmaxx̂sim(x̂, y), 〈x̂, y〉 /∈ Ds and y ′ =
argmaxŷsim(x, ŷ), 〈x, ŷ〉 /∈ Ds , respectively. Accordingly,
the loss for training the retrieval model is defined as

Lr = max
x ′ (δ + sim(x ′, y) − sim(x, y))+

+ max
y′ (δ + sim(x, y ′) − sim(x, y))+, (13)

where (x)+ = max(x, 0) and δ is a tunable hyper parameter.

F. Model Adaptation

The model adaptation process aims to adapt an image
captioning model pre-trained in the source domain well to
the target domain by fine-tuning the captioning model with
the pseudo image-sentence pairs generated by the retrieval
model. In order to further improve the performance of the
image captioning model in the target domain, a policy-gradient
based training algorithm is employed during fine-tuning. We
show the processes of generating pseudo image-sentence pairs
and fine-tuning the image captioning model in this section.

1) Generating Pseudo Image-Sentence Pairs: To adapt the
image captioning model to the target domain, we leverage
the pre-trained cross-modal retrieval model to generate a set
of pseudo image-sentence pairs. The retrieval is performed
in two directions, namely retrieving sentences with images
and retrieving images with sentences. Specifically, we propose
the following iterative algorithm to acquire the pseudo image
sentence pairs:

• The pre-trained cross-modal retrieval model is applied to
the unpaired target domain data to acquire an initial set
of pseudo image-sentence pairs, denoted as D̂0

t .
• In the i -th iteration, the retrieval model is fine-tuned using

the current set of pseudo image sentence pairs D̂i
t . The

loss function for fine-tuning the retrieval model is defined
in Eq. 13.

• The fine-tuned retrieval model is applied to the tar-
get domain data to acquire an updated set of pseudo
image-sentence pairs, denoted as D̂i+1

t . For each query
image (or sentence), the top k most similar sentences (or
images) are used to construct the pseudo image-sentence
pairs.

• Repeat the previous two steps for P times.

The pseudo image-sentence pairs D̂P
t acquired in the final

iteration are used to fine-tune the image captioning model.
2) Fine-Tuning Image Captioning Model: In the first few

epochs, the cross-entropy loss function Lc is used to fine-tune
the captioning model with the pseudo paired data D̂t . In
the next epochs, the captioning model is fine-tuned with a
policy-gradient based algorithm to better learn the linguistic
patterns of sentences in the target domain. The captioning
model is regarded as an agent, which interacts with external
environment composed of the input image and previously
generated words. Each generated word is considered as an
action. Upon generating a whole sentence, the agent receives
a reward, denoted by r , indicating the quality of the generated
sentence. For a sampled sentence ŷ, the reward r(ŷ) is

Algorithm 1 Cross-Modal Retrieval Guided Cross-Domain
Image Captioning

calculated with two evaluation metrics:
r(ŷ) = Bleu4(ŷ) + CIDEr(ŷ)

2
. (14)

During training, the following negative expected long-term
reward is minimized:

J (θc) = −E(r(ŷ)), ŷ ∼ pθc . (15)

Following [30], the gradient is approximated by

∇θc J (θc) ≈ −(r(ŷ) − r(y∗))∇θc logθc(ŷ), (16)

where ŷ is a sentence sampled using θc and y∗ is a sentence
obtained by greedy decoding, whose score serves as a baseline.
The whole training process is summarized in algorithm 1.

IV. EXPERIMENTAL SETUP

A. Datasets
In our experiments, the MSCOCO dataset [5] is used as

the source domain, while the Flickr30k dataset [6], the TGIF
dataset [63], the CUB-200 dataset [64], the Oxford-102 dataset
[65] and a newly collected “Conceptual” dataset are used as
target domains. In general, it is believed that Flickr30k and
TGIF have a moderate domain gap from MSCOCO, while
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CUB-200, Oxford-102 and Conceptual have a larger domain
gap from MSCOCO. The details about the datasets are as
follows:

• MSCOCO: The MSCOCO dataset includes
117,283 images in total, each annotated with 5 manually
written sentences. For fair comparison with the baseline
methods, we adopt the data split in [3] where the training,
validation and testing splits include 82,783 images,
5,000 images and 5,000 images, respectively.

• Flickr30k: There are 31,783 images in the Flickr30k
dataset and each image is also annotated with 5 sen-
tences. The data split is adopted from [3], where the
training split and testing split includes 29,000 images and
1,000 images, respectively.

• CUB-200: The CUB-200 dataset includes 6,033 images
of birds in total, and the sentence annotation for images
are adopted from [66]. We follow the data split in
[7], where 4,000 images are used for training and
2,033 images are used for testing.

• Oxford-102: The Oxford-102 dataset includes
8,189 images of flowers in total and the sentences
are also adopted from [66]. We adopt the same data
splitting as in [7], where 7,189 images are used for
training and 1,000 images are used for testing.

• TGIF: The TGIF dataset contains 100,000 animated
GIF images, where 90,000 images are for training and
10,000 images are for testing. Following the strategy in
[7], we sample the first frame of each GIF image as input.

• Conceptual: To further evaluate the performance of our
method, we conduct an additional experiment on a target
domain denoted as “Conceptual”, where the images and
sentences are unpaired and from different sources. Specif-
ically, the target domain images are from the Conceptual
Captions dataset [67], which are collected from various
websites. The sentences are from the Shutterstock Image
Description Corpus [21], which is harvested from the
Shutterstock website. For training, we randomly sample
30,000 images and 30,000 sentences from the Conceptual
Captions dataset and the Shutterstock Image Description
Corpus, respectively. We test our model using the val-
idation set of the Conceptual Captions dataset, which
contains 28,355 images and each image is annotated with
one sentence.

B. Baseline Methods

To evaluate the effectiveness of our method, we compare
our proposed method with the following cross-domain image
captioning methods. Both our method and the comparison
methods are first pre-trained on the source domain and then
fine-tuned on the target domain.

• Source Pre-trained: The captioning model that is only
pre-trained on the source domain is directly evaluated on
the test set of the target domain.

• DCC [32]: This model combines a lexical classifier based
on CNN and a language LSTM trained on unpaired text
with a fully connected layer.

• SAdT [7]: This model performs cross-domain caption-
ing by utilizing adversarial learning. A domain critic is

designed to assess whether the generated sentences are
indistinguishable from the target domain sentences and
a multi-modal critic is designed to evaluate the semantic
consistency between input image and generated sentence.

• DL [34]: A dual learning mechanism is designed to
utilize unpaired training data. Two objectives are simulta-
neously optimized: generating descriptions from images
and generating images from text.

• MLADIC [35]: An improved version of [34] which
also employs the dual learning mechanism. The policy
gradient method is further refined in MLADIC.

• Graph-Enc-Dec [22]: An unsupervised image captioning
method that learns to align the scene graphs extracted
from images and sentences. This method includes two
feature mapping functions that map features from one
modality to another modality and two discriminators that
distinguish the real features from the mapped features.
For fair comparison, we pre-train the feature mapping
functions and the discriminators using the source domain
paired data, and then fine-tune the model using unpaired
target domain data.

• Paired: The image captioning model in our method is
fine-tuned directly using the paired training data in the
target domain. This serves as an empirical upper bound of
our experiments (shown in rows with a gray background).
Note that the actual obtained performance numbers some-
times are not the highest among the results because using
paired training data only theoretically should lead to the
upper bound.

C. Evaluation Metrics

We adopt the evaluation metrics that are widely used in
previous image captioning methods [2]–[4], including Bleu-n
[25], METEOR [26], ROUGE_L [27] and CIDEr [28]. Bleu-n
calculates the fraction of n-grams of the candidate sentence
that appear in reference sentences, and the value of n varies
from 1 to 4 in our method. METEOR evaluates a candidate
sentence by calculating several scores between words and
phrases in the candidate sentence and the reference sentences.
ROUGE_L is based on the longest common subsequence
between a candidate sentence and the reference sentences.
CIDEr is specifically designed for evaluating image descrip-
tions and calculates the relevancy between the candidate
sentence and the reference sentences using human consensus.

D. Implementation Details

1) Image Feature Extraction: The ResNet-101 model [68]
pre-trained on ImageNet is used to extract the representation
of images. The image is used as the input of the CNN without
re-sizing or cropping, and the output of the last convolutional
layer is further processed for different tasks. We perform
average pooling over all spatial locations of the feature map
to obtain a 2,048-dimensional feature vector. For the image
captioning task, adaptive average pooling is applied to obtain
a feature map with the size of 14 × 14 × 2048.

2) Corpus and Language Model: The sentences of the
source domain and the target domains are pre-processed fol-
lowing [3]. Words appearing less than 5 times are replaced
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TABLE I

QUANTITATIVE EVALUATION RESULTS OF CROSS-DOMAIN IMAGE CAPTIONING ON DIFFERENT TARGET DOMAINS. NOTE THAT THE ACTUAL OBTAINED
PERFORMANCE NUMBERS WITH PAIRED TRAINING DATA (IN ROWS WITH A GRAY BACKGROUND) SOMETIMES ARE NOT THE HIGHEST AMONG

THE RESULTS BECAUSE USING PAIRED TRAINING DATA ONLY THEORETICALLY SHOULD LEAD TO THE UPPER BOUND

with a special token. To simplify the implementation, a joint
vocabulary containing words in both the source domain and
the target domain is used. The word embedding vectors are
set to 300 dimension and initialized randomly.

3) Model Pre-Training Details: The adaptive image cap-
tioning model is pre-trained on the source domain by Adam
optimizer [69] with the learning rate of 2 × 10−3. Dropout is
applied with a dropout probability of 0.5 to avoid overfitting.
The value of hyper parameter δ in Eq. 13 is set to 0.2,
following [42].

4) Model Adaptation Details: When fine-tuning the image
captioning model using the pseudo image-sentence pairs in
the target domain, the Adam optimizer [69] is applied and the
learning rate is set to 5 × 10−4. The number of top retrieving
results (i.e., k) in both retrieving directions is set to 5 for the
best performance. The detailed analysis of this parameter will
be given in Section 4.4.

E. Cross-Domain Image Captioning
We show the automatic evaluation results of cross-domain

image captioning in Table I. From the results demonstrated
in Table I, we can draw the following observations:

• Our method achieves mostly better or comparable results
for most evaluation metrics on all four target domain
datasets, which clearly demonstrates the benefit of design-
ing a cross-modal retrieval model to generate pseudo
paired target data as an auxiliary for cross-domain image
captioning.

• From Table I, we observe that our method performs
slightly inferior to “DL” and “MLADIC” on the Oxford-
102 dataset in terms of METEOR, ROUGE_L and CIDEr.
The large domain gap between MSCOCO and Oxford-
102 may lead to the pseudo image-sentence pairs that
are less accurate and affects the performance of the
captioning model. Another possible reason is that the
training set in Oxford-102 contains 7,192 images and
is relatively small, so the performance of our method
degrades due to the overfitting problem. While in the dual
learning framework proposed by “DL” and “MLADIC”,
the image captioning model is trained together with an
image synthesis model. The input of the captioning model
includes both the images in the target domain and the
synthesized images, which indicates that the captioning
model learns from more training data and the overfitting
problem is alleviated.

• On the target domain denoted as “Conceptual” that con-
tains images and sentences from different sources and
has a large domain gap from MSCOCO, our method out-
performs the “Source Pre-trained” baseline. The results
validate the effectiveness of our method when han-
dling the challenging cross-domain image captioning
scenario.

F. Ablation Studies
To evaluate the effect of each individual component,

we evaluate several variants of our method on Flickr30k
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TABLE II

QUANTITATIVE EVALUATION RESULTS OF CROSS-DOMAIN VIDEO CAPTIONING

TABLE III

RESULTS OF ABLATION STUDIES ON THE FLICKR30K DATASET AND THE OXFORD-102 DATASET. THE COLUMNS ’ADAPTIVE’ AND ’REFINE’ DENOTES

USING THE ADAPTIVE LSTM AND USING THE REFINED RETRIEVAL RESULTS, RESPECTIVELY

Fig. 3. Convergence analysis during model adaptation on Flickr30k and Oxford-102. The blue curve indicates training with cross-entropy and the red curve
indicates training with reinforcement learning.

and Oxford-102. The details of these variants are as
follows:

• without adaptive LSTM: The adaptive language LSTM is
replaced by a normal LSTM model.

• without refining retrieve results: The pseudo
image-sentence pairs in the initial iteration D̂0

t is
used for fine-tuning the captioning model.

• without adaptive LSTM or refined retrieve results: The
adaptive language LSTM is replaced by a normal LSTM
model, and the pseudo image-sentence pairs in the initial
iteration D̂0

t is used for fine-tuning the captioning model.

The results are shown in Table III. In general, both the adap-
tive LSTM and the pseudo image-sentence pairs contribute to
the performance of the model.

1) Parameter Analysis: Besides, we also conduct addi-
tional experiments to show how the quantity of the pseudo
image-sentence pairs affects the performance of cross-domain
image captioning. In the parameter analysis experiments,
the value of k defined in Section III-F.1 varies from 1 to
7 and the results are illustrated in Table IV. As the value of k
increases, it is interesting to observe that most of the evaluation
metrics show a trend of increasing, reaching the maximum
value when k = 5 and then decrease. The reason might be
that when k is small, the retrieval results are accurate but the

TABLE IV

RESULTS OF USING DIFFERENT NUMBERS OF RETRIEVED SAMPLES

ON FLICKR30K AND OXFORD-102. THE COLUMNS B-N, M, R,
C ARE ABBREVIATIONS FOR BLEU-N, METEOR, ROUGE_L AND

CIDER, RESPECTIVELY

quantity of pseudo image-sentence pairs is not sufficient to
reflect the semantic correlations in the target domain data.
When the value of k is too large, some inaccurate retrieval
results are introduced, which reduces performance slightly.
Thus, we fix the value of k to 5 in our experiments.

2) Convergence Analysis: To analyse the convergence of
our method, we visualize the performance change in the
Flickr30k dataset and the Oxford-102 dataset. We report
the learning curves of Bleu-4 and CIDEr in Fig. 3, since
Bleu-4 and CIDEr evaluates the quality of the sentence well
and other evaluation metrics show a similar changing trend
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TABLE V

QUANTITATIVE RESULTS OF CROSS-MODAL RETRIEVAL ON THE TARGET DOMAIN DATASETS

Fig. 4. Sentences generated by our method and baseline methods conditioned on the images from the Flickr30k dataset (the first three rows), the Oxford-
102 dataset (the fourth row) and the CUB-200 dataset (the last two rows). The sentences labeled with ‘Ours w/o refine’ are generated with the captioning
model trained with the pseudo image-sentence pairs that are not refined, namely D̂0

t . The sentences marked with ‘Ours w/o adapt’ are generated with our full
model that replaces the adaptive LSTM with normal LSTM model.

with these metrics during training. As is shown in the fig-
ure, after training with reinforcement learning, the perfor-
mance largely increases and the model converges after about
8 epochs.

G. Extension to Cross-Domain Video Captioning

To evaluate the effectiveness and extensibility of our
method, we further apply the proposed method to cross-
domain video captioning. In these experiments, the MSR-VTT
dataset [70] is used as the source domain, while the MSVD
dataset [71] and the Charades Captions dataset [72] are used
as the target domains. MSR-VTT contains 10,000 video clips

and 200,000 sentence annotations. The training, validation
and testing splits of MSR-VTT contains 6,513, 2,990 and
497 video clips, respectively. The MSVD dataset contains
1,970 video clips from YouTube, where each clip is anno-
tated with 10 sentences and the training, validation and test-
ing splits include 1,200, 100 and 670 videos, respectively.
There are 9,848 videos in the Charades Captions dataset,
where 7,985 videos are for training and 1,863 videos are
for testing. Compared to the MSVD dataset, the domain gap
between the MSR-VTT dataset and the Charades Captions
dataset is larger since the videos in Charades Captions are
longer than the videos in MSR-VTT, and the descriptions in
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Fig. 5. Some examples retrieved by our cross-domain retrieval model on the Flickr30k dataset.

Charades Captions are more complex and includes multiple
sentences.

For videos in all the video captioning datasets, we sample
frames at 2 fps and extract the features of the frames using
the pre-trained Inception-Resnet model [73]. The feature
vector before the last fully-connected layer is extracted for
each frame.

As is shown in Table II, we observe that our method outper-
forms the baseline by a large margin. Compared to the model
pre-trained on the source domain, our method improves the
performance significantly on Charades Captions dataset, which
has a large domain gap from the source domain. The results
indicate that our method generalizes well to the cross-domain
video captioning task, validating the effectiveness of our
method.

H. Results of Cross-Modal Retrieval

We also quantitatively evaluate the cross-modal retrieval
performance of our method on the target domain datasets. We
compare the cross-modal retrieval method proposed in [42],
denoted as VSE++, with our method. The VSE++ model
is pre-trained on MSCOCO and is evaluated on the test sets
of Flickr30k and Oxford-102. The performance is measured
using recall at N, namely the portion of queries whose top
N nearest samples in another modality contain the correct
sample, denoted as R@N. The results are shown in Table V.
Compared with the baseline method, our method achieves
higher recall on both datasets, indicating that our method is
able to transfer to the target domains with a moderate domain
gap as well as a large domain gap.

I. Qualitative Results

In this section, we show some sentences generated by our
method and the baseline methods in Fig. 4. As shown in the
figure, our captioning model generates captions that describe
the content of the image in detail. We can also observe that
the quality of the sentences generated by the full model is
superior to that of the sentences generated by the captioning
model trained with pseudo image-sentence pairs that are not
refined.

To obtain an intuitive understanding of our cross-modal
retrieval model, we also show some examples of retrieved
image-sentence pairs in Fig. 5. By comparing the retrieved
samples and the query, we observe that the retrieved samples
are semantically relevant to the query, indicating that our
retrieval model is able to capture the correlation between
the images and sentences in the target domains. Furthermore,
the retrieved samples closest to the query share similar con-
tent. For instance, all the retrieved images in the first row
involve multiple persons and have trees and grassy field in
the background, which illustrates that the retrieved results are
reasonable.

V. CONCLUSION

In this paper, we have presented a novel cross-domain
image captioning approach that couples a cross-modal retrieval
model and an adaptive image captioning model. The retrieval
model is designed to generate pseudo image-sentence pairs
in the target domain which can enhance the performance of
captioning. The adaptive image captioning model is respon-
sible for adapting the source domain knowledge to the target
domain which can bridge the gap between different domains.
Extensive experiments on four public datasets can validate the
effectiveness of our method. In our future work, we are going
to reduce the domain shift in image spaces to improve the
captioning performance.
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