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ABSTRACT
Video style transfer is a challenging task that requires not only
stylizing video frames but also preserving temporal consistency
among them. Many existing methods resort to optical flow for
maintaining the temporal consistency in stylized videos. However,
optical flow is sensitive to occlusions and rapid motions, and its
training processing speed is quite slow, which makes it less practi-
cal in real-world applications. In this paper, we propose a novel fast
method that explores both global and local temporal consistency
for video style transfer without estimating optical flow. To preserve
the temporal consistency of the entire video (i.e., global consis-
tency), we use structural similarity index instead of flow optical
and propose a self-similarity loss to ensure the temporal structure
similarity between the stylized video and the source video. Further-
more, to enhance the coherence between adjacent frames (i.e., local
consistency), a self-attention mechanism is designed to attend the
previous stylized frame for synthesizing the current frame. Exten-
sive experiments demonstrate that our method generally achieves
better visual results and runs faster than the state-of-the-art meth-
ods, which validates the superiority of simultaneously preserving
global and local temporal consistency for video style transfer.

CCS CONCEPTS
• Information systems→Multimedia content creation; •Com-
puting methodologies → Computer vision.
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1 INTRODUCTION
Video style transfer has gained growing interests in recent years due
to its wide applications in video entertainment, augmented reality,
animation synthesis and art creation. Several methods [4, 20] extend
style transfer from image to video and process each video frame
independently without considering the temporal consistency in
video. So the temporal inconsistency can be observed visually as
flicker artifacts and discontinuity between consecutive stylized
frames.

To address this problem, many methods [1, 19] introduce opti-
cal flow to initialize the optimization process and incorporate it
into the loss function. Although impressive and smoothing styl-
ized videos are obtained by these methods, their processing speed
is quite slow, making them less practical in real-world scenarios.
Several recent models [3, 5, 8] improve the speed of video style
transfer by using feed-forward networks, and the optical flow is still
used in the temporal loss as a guidance to maintain the temporal
coherence between consecutive frames. Yet optical flow is sensitive
to occlusions and rapid motions, which affects the visual quality of
the synthesized videos.

In this paper, we propose a novel fast method that preserves both
global and local temporal consistency for video style transfer, which
achieves real-time processing speed, nice perceptual style quality,
and coherent stylization. To maintain the global consistency over
the entire video, a self-similarity loss is proposed to enforce the
temporal structure similarity between the stylized video and the
source video. The temporal structure describes self-similarity of
the entire video, represented by a sequence of structural similarity
index (SSIM). To further maintain the local coherence between
consecutive frames, we design a self-attention module to learn the
temporal dependency between adjacent frames, where the previous
stylized frame is attended via attention weights for synthesizing the
current frame. By this way, the self-similarity loss and self-attention
module replace optical flow as model-free signals to preserve the
temporal consistency in both global and local terms.

Our model is constructed by a feed-forward neural network
under an encoder-decoder framework, coupled with the proposed
self-attention module and a feature transformation module [12]. It
is trained using the proposed self-similarity loss combined with
a style loss and a content loss to simultaneously guarantee great
style perceptual quality and coherent stylized effect.

In summary, the contributions of this work are:

• We propose a simple but efficient method for arbitrary video
style transfer that preserves both global and local temporal
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Figure 1: The overview of our proposed method. Our model consists of an encoder-decoder module, a self-similarity module,
a transformation module and a loss module. It takes the video frames and a style image as inputs of the encoder, and uses the
feature maps of the video frames and the style image as inputs of the transformation module. Then the transformed feature
maps of the video frames are fed into the attentionmodule where each transformed featuremap and its previous transformed
feature map are fused by the attention map. Finally, the attended transformed feature map of each video frame is decoded
into a stylized video frame. The self-similarity loss quantifies the difference between the SSIM sequences of the source video
and the stylized video. The style loss and the content loss are calculated by the loss module.

consistency of videos, achieving real-time processing speed
and nice perceptual style quality.

• We propose a novel self-similarity loss to constrain the tem-
poral structure similarity between the stylized video and the
source video. It can effectively suppress the global temporal
inconsistency by reducing flicker artifacts and distortions.

• We design a self-attention module to further strengthen the
local temporal consistency in adjacent frames by learning
the dependency between adjacent frames. It can be read-
ily incorporated into other neural models for video style
transfer.

• Experimental results show that our method outperforms the
existing methods on both visual effect and proceeding speed.

2 RELATED WORK
2.1 Video Style Transfer
Several previous methods [4, 20] formulate the video style transfer
as an extension of image style transfer. Anderson et al. [1] extend [7]
to video style transfer by using optical flow to initialize the style
transfer optimization and incorporating the flow explicitly into the
loss function. To reduce the artifacts at boundaries and occluded
regions, Ruder et al. [19] introduce masks to filter out optical flow
with low confidences in the loss function. Chen et al. [3] extend [10]
to a feed-forward network for video style transfer. It first obtains the
current result via a learned flow, and then reduces the artifacts at
the occluded regions by fusing the warped result with the indepen-
dently synthesized result via a learned occlusion mask. Gao et al. [5]
propose a feature-map-level temporal loss to penalize variations
in the high-level features of the same object in consecutive frames.
All these video style transfer methods heavily rely on using optical
flow to preserve temporal smoothness and using occlusion mask to
stabilize the results. Instead of estimating optical flow, our method
uses a self-similarity loss to constrain the structural similarity of the
source video and the synthetic video, and a self-attention module to
strengthen the temporal consistency in adjacent frames by learning

the dependency between adjacent frames, which achieves coherent
stylization and real-time processing speed.

2.2 Self-similarity
Structural similarity index (SSIM) [23] is measured from brightness,
contrast and structure, which intuitively reflects the structural
properties of objects in images. Because of its simple calculation
and excellent performance, it is often used as an alternative method
of signal-to-noise ratio and mean square error in video compression
and reconstruction [22]. SSIM also has been applied to pattern
recognition such as image classification [6, 18] where structural
relevance of images is expressed by SSIM to learn more accurate
image descriptors for recognition. Different from these methods, we
make the first attempt to introduce SSIM into video style transfer
by using it to represent the temporal self-similarity of the entire
video and retain the temporal smoothness in videos.

2.3 Self-attention
Our self-attention module is related to the recent self-attention
methods for image generation and machine translation [25]. Sev-
eral recent works [16, 24] have used it for image style transfer.
Park et al. [16] introduce the self-attention to flexibly match the
semantically nearest style features onto the content features. Yao
et al. [24] incorporate the self-attention into an auto-encoder net-
work to capture the critical characteristics and long-range region
relations of the input image. Different from these methods that use
the self-attention mechanism to enhance the visual effect of the
stylized images, we design a self-attention module to retain the
temporal consistency of adjacent frames for video style transfer.

3 METHOD
3.1 Motivation
Directly employing style transfer models to video frames will cause
strong flickering and distortions, and affect the visual effects of
stylized videos. To tackle this problem, what we intuitively think of



is how to explore the temporal consistency in videos for alleviating
the flicker artifacts. Inspired by the fact that the structural simi-
larity index (SSIM) can measure the self-similarity of a video and
capture the temporal structure of the entire video, we propose a self-
similarity loss based on SSIM to constrain the stylized video to have
similar temporal structure as the source video for preserving the
global temporal consistency. Furthermore, to maintain the temporal
coherence between consecutive frames, we build a self-attention
module to learn the temporal dependency between adjacent frames
for synthesizing the current frame by attending previous stylized
frames.

3.2 Overview
Given a source video 𝑋 = {𝑥1, . . . , 𝑥𝑛} and an arbitrary style image
𝑆 , our goal is to generate a new stylized video 𝑌 = {𝑦1, . . . , 𝑦𝑛},
where 𝑥𝑖 and𝑦𝑖 represent the 𝑖-th source frame and the 𝑖-th stylized
frame, respectively.

Our video style transfer model is built on an encoder-decoder
module coupled with the proposed self-attention module and a
transformation module. The encoder-decoder module aims to re-
construct the videos frames faithfully and is fixed when training.
The self-attention module learns the temporal dependency between
the previous stylized frame and the current synthesized frame, keep-
ing the temporal smoothness and style correspondence between
adjacent frames. The transformation module consists of two CNNs,
aiming to learn a linear transformation between the content and
style information more flexibly and efficiently. To calculate a style
loss and a content loss, a loss module is constructed by a pre-trained
VGG-19 network [21]. In the training process, our proposed self-
similarity loss is combined with the style loss and the content loss
to train our network, aiming to enforce the temporal structure sim-
ilarity between the stylized video and the source video. Figure 1
illustrates the overview of our model.

3.3 Self-attention Module
For each video frame 𝑥𝑖 , its feature map 𝐹𝑥𝑖 associated with the
style image’s feature map 𝐹𝑠 are given by the encoder module.
Then we feed both 𝐹𝑥𝑖 and 𝐹𝑠 into the transformation module and
produce the output feature map 𝐹𝑑𝑖 . In the self-attention module,
the transformed feature map 𝐹𝑑𝑖−1 of the previous frame 𝑥𝑖−1 is
attended and combined with the transformed feature map 𝐹𝑑𝑖 of the
current frame 𝑥𝑖 to obtain the updated feature map 𝐹 ′

𝑑𝑖
, formulated

by

𝐹 ′
𝑑𝑖

= 𝑆𝐴𝑁𝑒𝑡 (𝐹𝑑𝑖−1 , 𝐹𝑑𝑖 ), (1)

where 𝑆𝐴𝑁𝑒𝑡 (·, ·) represents the self-attention module.
In the self-attention module as shown in Figure 2, we first feed

the transformed feature map 𝐹𝑑𝑖−1 of the previous frame 𝑥𝑖−1 into
one 1 × 1 convolution to obtain 𝑓 (𝐹𝑑𝑖−1 ), and feed the transformed
feature map 𝐹𝑑𝑖 of the current frame 𝑥𝑖 into two 1× 1 convolutions
to obtain 𝑔(𝐹𝑑𝑖 ) and ℎ(𝐹𝑑𝑖 ), respectively, given by

𝑓 (𝐹𝑑𝑖−1 ) =𝑊𝑓 𝐹𝑑𝑖−1 ,

𝑔(𝐹𝑑𝑖 ) =𝑊𝑔𝐹𝑑𝑖 ,

ℎ(𝐹𝑑𝑖 ) =𝑊ℎ𝐹𝑑𝑖 .

(2)
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Figure 2: The network architecture of the self-attention
module. The inputs are the transformed featuremaps of the
current video frame and its previous video frame. The out-
put is the attended transformed feature map of the current
video frame.

Then the attention map𝑀 is calculated by

𝑚𝑘,𝑗 =
exp(𝑠 𝑗𝑘 )∑𝑁
𝑗=1 exp(𝑠 𝑗𝑘 )

,

𝑠 𝑗𝑘 = 𝑓 (𝐹𝑑𝑖−1 )
T
𝑗 𝑔(𝐹𝑑𝑖 )𝑘 ,

(3)

where𝑚𝑘,𝑗 represents each element of the attentionmap𝑀 , 𝑓 (𝐹𝑑𝑖−1 ) 𝑗
represents the 𝑗-th column of 𝑓 (𝐹𝑑𝑖−1 ), and 𝑔(𝐹𝑑𝑖 )𝑘 represents the
𝑘-th column of 𝑔(𝐹𝑑𝑖 ). We multiply 𝑀 with the output ℎ(𝐹𝑑𝑖 ) of
the 1 × 1 convolution of the transformed feature map 𝐹𝑑𝑖 to obtain
𝑅𝑑𝑖 :

𝑅𝑑𝑖 = 𝑀 ⊙ ℎ(𝐹𝑑𝑖 ), (4)
where ⊙ denotes the element-wise multiplication operator. Finally,
the output 𝐹 ′

𝑑𝑖
of the self-attention module is calculated by

𝐹 ′
𝑑𝑖

= 𝛿𝑣 (𝑅𝑑𝑖 ) + 𝐹𝑑𝑖 , (5)

where 𝑣 (𝑅𝑑𝑖 ) = 𝑊𝑣𝑅𝑑𝑖 represents 1 × 1 convolution, and 𝛿 is a
learnable scalar with an initial value of 0.

In the decoder module, we reconstruct the attended feature map
𝐹 ′
𝑑𝑖

to generate the stylized video frame 𝑦𝑖 .

3.4 Self-similarity Constraint
In order to maintain the global temporal consistency in videos, we
except that the stylized video has similar temporal structure to the
source video.

In this work, the temporal structure of a video is represented
by the temporal self-similarity over the entire video. We employ
structural similarity index (SSIM) to represent the structure sim-
ilarity of adjacent frames and then use the sequence of SSIM to
describe the temporal self-similarity of a video. Accordingly, a novel
self-similarity loss is proposed to constrain the stylized video to
exhibit similar temporal self-similarity to the source video.

Given two consecutive frames 𝑥𝑖−1 and 𝑥𝑖 , SSIM is defined as

𝑆𝑆𝐼𝑀 (𝑥𝑖−1, 𝑥𝑖 ) =
(2𝜇𝑥𝑖−1𝜇𝑥𝑖 + 𝑐1) (2𝜎𝑥𝑖−1𝑥𝑖 + 𝑐2)

(𝜇2𝑥𝑖−1 + 𝜇2𝑥𝑖 + 𝑐1) (𝜎2𝑥𝑖−1 + 𝜎2𝑥𝑖 + 𝑐1)
, (6)

where 𝜇𝑥𝑖−1 and 𝜇𝑥𝑖 represent the means of 𝑥𝑖−1 and 𝑥𝑖 , respec-
tively. 𝜎𝑥𝑖−1 and 𝜎𝑥𝑖 represent the standard deviations of 𝑥𝑖−1 and



𝑥𝑖 , respectively. 𝜎𝑥𝑖−1𝑥𝑖 is the convariance of 𝑥𝑖−1 and 𝑥𝑖 . 𝑐1 and 𝑐2
denote two constants.

For a source video X = {𝑥1, 𝑥2, ..., 𝑥𝑛} , its self-similarity se-
quence is represented by SX = [𝑆1, 𝑆2, ..., 𝑆𝑛] where 𝑆𝑖 is given
by

𝑆𝑖 =

{
0 𝑖 = 1,
𝑆𝑆𝐼𝑀 (𝑥𝑖−1, 𝑥𝑖 ) otherwise.

(7)

In the same way, we can obtain the self-similarity sequence SY of
the reconstructed video Y = {𝑦1, 𝑦2, ..., 𝑦𝑛}.

Then the self-similarity loss is defined as the squared L2 norm
between the self-similarity sequences SX and SY, formulated by

| |SY − SX | |22 . (8)

Furthermore, to represent the structure similarity of two tempo-
rally distant video frames, SSIM is improved in a long-term way. Let
𝐿 denote the number of interval frames between the two temporally
distant video frames. For example, when 𝐿 = 3, the long-term SSIM
is calculated between the frames 𝑥𝑖 and 𝑥𝑖−3. Thus the long-term
self-similarity sequence is represented by SXL = [𝑆𝐿1 , 𝑆

𝐿
2 , ..., 𝑆

𝐿
𝑛 ]

where 𝑆𝐿
𝑖
is given by

𝑆𝐿𝑖 =

{
0 𝑖 = 𝑛 − 𝐿,

𝑆𝑆𝐼𝑀 (𝑥𝑖−𝐿, 𝑥𝑖 ) otherwise.
(9)

In the same way, we can obtain the long-term self-similarity se-
quence SYL of the reconstructed video Y = {𝑦1, 𝑦2, ..., 𝑦𝑛}. Accord-
ingly, the long-term self-similarity loss can be defined as

| |SYL − SXL | |
2
2 . (10)

Finally, the overall self-similarity loss is given by

𝐿𝑠𝑒𝑙 𝑓 −𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = | |SY − SX | |22 + ||SYL − SXL | |
2
2 . (11)

3.5 Training and Testing
During the training process, we first feed the first frame of the
source video and the style image into the network without the
self-attention module and learn the synthetic feature map of the
first frame. Then we feed the second frame of the source video
and the style image into the network, and the feature maps of the
previous frame and the current frame are used as the inputs of the
self-attention module. And the same goes for the remaining frames.

Besides the proposed self-similarity loss, we also use a style loss
𝐿𝑠𝑡𝑦𝑙𝑒 and a content loss 𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 as prior work [7]. Thus the overall
loss function 𝐿 is formulated by:

𝐿 = 𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝛼𝐿𝑠𝑡𝑦𝑙𝑒 + 𝛽𝐿𝑠𝑒𝑙 𝑓 −𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, (12)

where 𝛼 and 𝛽 are hyper-parameters.
In the testing stage, given an input video x = {𝑥𝑖 }𝑛𝑖=1 and a style

image, all of the frames are directly feed into the encoder frame-
by-frame with the style image, their corresponding features are
then learned by the transformation module, and finally the stylized
video y = {𝑦𝑖 }𝑛𝑖=1 is generated via the decoder.

4 EXPERIMENTS
4.1 Datasets
To evaluate the effectiveness of our method, we use the FlyingTh-
ing3D and Monkaa datasets [14] as training videos and the MPI

Sintel dataset [2] as testing videos. The FlyingThings3D dataset
is a large dataset of everyday objects flying along randomized 3D
trajectories, which contains around 25,000 frames. The Monkaa
dataset is collected from animation short films with about 8,640
frames. The MPI Sintel dataset provides multiple real-world scenar-
ios, which contains 35 videos. The WikiArt dataset [15] is used as
the style image dataset, consisting of 11,025 images, and all the test
style images are from published implementations [13].

4.2 Experiment Setup
Implementation Details. All the video frames are resized to 256×

256. We train the model with a batch size of 2 by 500 iterations
and use Adam optimizer[11] with a learning rate of 10−7. The
hyper-parameters of 𝛼 and 𝛽 are set to 𝛼 = 0.02 and 𝛽 = 50,
respectively. The number of interval frames in the long-term self-
similarity loss is empirically set to 𝐿 = 3. Our model is implemented
using PyTorch V0.3 [17] with cuda on a single GTX TITAN X GPU.
Code is available at: https://github.com/mcislab-machine-learning/
videostyletransfer.

Compared methods. We compare our method with several exist-
ing video style transfer methods such as [3, 5, 8, 19] and image style
transfer methods such as [9, 12, 13]. We use the model proposed
in [12] as our based model.

• ASTV [19] uses optical flow and occlusion mask to pre-
serve the temporal smoothness with an optimization-based
method.

• [3] proposes a recurrent model using feature maps of previ-
ous frame and consecutive frames as input with optical flow
warping in both training and inference stages.

• [8] uses a feed-forward network with a temporal loss to
avoid computing optical flow on the fly.

• Reconet [5] incorporates a luminance warping constraint to
capture the luminance changes between consecutive frames
and increase the stylization stability.

• AdaIN [9] is a classical arbitrary image style transfer method
that adjusts the mean and variance of the content input to
match those of the style input.

• OST [13] focuses on the theoretical analysis of feature trans-
form and proposes a new closed-form solution.

• [12] learns a transformation matrix that is efficient for arbi-
trary image style transfer.

4.3 Results
Qualitative Results. Figure 3 shows two examples of two con-

secutive frames from Alley-1 and Temple-3 videos, respectively,
stylized by ASTV and our method with Candy style image, where
two local regions for each frame zoom in for detailed demonstration.
Since the other video style transfer methods (i.e., [3, 5, 8]) do not
release the trained models or the complete training data, we can
not reproduce the stylized video frames from these methods for
qualitative comparison. From Figure 3, we can have the following
observations:

• As shown in Figure 3(b), unexpected color changes appear
in some regions of the stylized video frames generated by

https://github.com/mcislab-machine-learning/videostyletransfer
https://github.com/mcislab-machine-learning/videostyletransfer


（a）Consecutive source frames and the style image

（b）Stylized frames by ASTV

（c）Stylized frames by Ours

i-1 i i-1 i

Figure 3: Qualitative comparison results between ASTV and our method. There are two examples of two consecutive frames
from Alley-1 and Temple-3 videos, respectively, with Candy style image.

ASTV [19], which causes obvious flickers and distorts the
content.

• While the stylized video frames generated by our method
performs more consistent and stable, as shown in Figure 3(c),
which verifies that our method succeeds in preserving the
temporal consistency in both long and short terms.

• Furthermore, the texture in our stylized frames is more au-
thentic, which validates that our method performs better
than ASTV in maintaining the detailed content of the source
video.

Figure 4 shows two examples of two consecutive frames from
CutBunny video that are stylized with Mondrian style image by the
image style transfer methods (i.e., AdaIN [9] ,OST [13] and the base
model [12]) and our method. The first two columns demonstrate
the object motion and the last two columns show the static scene.
From Figure 4, it is interesting to observe that

• The synthesized videos by AdaIN and OST have obvious
flicker and incoherence obviously in color blocks and object
boundary.

• The base model produces unexpected color changes such as
the sky and the rabbit that also causes obvious flicker.

• Our method maintains the continuity of video in both object
motion and static scene scenarios, which clearly validates the

benefits of the self-attention module and the self-similarity
loss.

To further demonstrate the difference between the basemodel [12]
and our proposed model, Figure 5 shows two examples of consecu-
tive frames from two different videos (Ambush-5 and Ambush-1)
stylized with Candy style image by the base model and our pro-
posed model, where two local regions for each frame zoom in for
demonstrations in detail. We can observe that

• Our model captures more detailed texture information. For
example, the stone texture looks clearer and more authentic,
as shown in the blue and green boxes of Figure 5(c).

• Our model generates more consistent and stable stylized
videos. For example, the continuity of the brightness is kept
well.While the basemodel produces unexpected color changes,
as shown in red and yellow boxes of Figure 5(c).

All these observations clearly validate that our model not only
effectively maintains the temporal consistency, but also retains
content details well via the proposed self-similarity loss and self-
similarity module.

Quantitative Results. To quantitatively evaluate the temporal
consistency captured by the proposed method, we compare the
temporal errors of stylized videos between different video style



(a) Consecutive source frames and the style image

(b) Stylized frames by AdaIN

i-1 i i-1 i

(c) Stylized frames by OST

(e) Stylized frames by Ours

(d) Stylized frames by the base model

Figure 4: Qualitative comparison results between the image style transfer methods (AdaIN, OST and the base model) and our
method. There are two examples of two consecutive frames from CutBunny video with Mondrian style image. The left two
columns demonstrate the object motion and the right two columns show the static scene.

transfer methods on the MPI Sintel Dataset with Candy style image,
as reported in Table 1. The results of all the compared methods
are directly copied from their original papers. The temporal er-
ror 𝑒𝑡𝑒𝑝_𝑒𝑟𝑟𝑜𝑟 is defined by the average pixel-wise Euclidean color
difference of consecutive frames [8]:

𝑒𝑡𝑒𝑝_𝑒𝑟𝑟 =

√√√
1

(𝑛 − 1) × 𝐷

𝑛−1∑
𝑖=1

𝑀𝑖 | |𝑦𝑖 −𝑊𝑖 (𝑦𝑖−1) | |2, (13)

where 𝑛 represents the total number of frames, 𝐷 = 𝐻 ×𝑊

represents the multiplication of height 𝐻 and width𝑊 of the in-
put/output image,𝑀𝑖 is the ground-truth forward occlusion mask,
and𝑊𝑖 is the ground-truth forward optical flow. 𝑦𝑖−1 and 𝑦𝑖 denote
the stylized previous and current frames, respectively.

Method Alley-2 Ambush-5 Bandage-2 Market-6 Temple-2
[3] 0.0934 0.1352 0.0715 0.1030 0.1094

Reconet [5] 0.0846 0.0819 0.0662 0.0862 0.0831
[8] 0.0439 0.0675 0.0304 0.0553 0.0513

ASTV[19] 0.0252 0.0512 0.0195 0.0407 0.0361
Ours 0.0205 0.0604 0.0141 0.0853 0.0474

Table 1: Temporal errors of different methods in the testing
stage with Candy style image. Five scenes from the MPI Sin-
tel Dataset are selected for evaluation.

From Table 1, we can notice that our method generally achieves
lower temporal error than other methods in most cases, which
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Figure 5: Qualitative comparison results between the base model and our method. There are two examples of consecutive
frames from two different videos (Ambush-5 and Ambush-1) with Candy style image.
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Figure 6: Ablation studies on the consecutive frames from CutBunny video with Mondrian style image.

validates the effectiveness of replacing optical flow with the self-
similarity loss and the self-attention model. Compared with ASTV,
our method works worse for some videos such as Market-6 and
Temple-2, probably due to that ASTV is an optimized-based method
and uses the temporal error as the optimization objective.

Table 2 shows the run time of ASTV and our method using
different frame scales: 256×256, 360×640, 436×1024. It is interesting

to observe that our model is superior in computation cost and
reaches real-time processing speed, owing to the efficient network
design and avoidance of optical flow calculation. Although ASTV
achieves good results on preserving style imformation and low
temporal error (as shown in Table 1), it has very high computation
cost, which makes it unfeasible for real-time video style transfer.
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Figure 7: Two exemplars of ablation studies on SSIM se-
quence. (a) Temple-2 video. (b) Shaman-2 video.

Frame Size 256 × 256 360 × 640 436 × 1024
ASTV[19] 0.202 0.096 0.063

Ours 96.15 65.10 26.81
Table 2: Run time of different methods. Run time is mea-
sured by the average FPS on a single TITAN X GPU.

Method Alley-1 Ambush-2 Cave-2 Market-2 Shaman-2
w/o ssim 0.0205 0.1688 0.1119 0.0265 0.0216

w/o attention 0.0215 0.1804 0.1167 0.0253 0.0225
w/o both 0.0217 0.1817 0.1217 0.0267 0.0229
Ours 0.0152 0.1513 0.0374 0.0169 0.0079

Table 3: Ablation studies on temporal errorwithCandy style
image. Five scenes from the MPI Sintel Dataset are selected
for evaluation.

4.4 Ablation Studies
We conduct ablation studies by comparing our method with three
variants: without the self-similarity loss (denoted as “w/o ssim"),
without the self-attention module (denoted as “w/o attention"), and
without both total self-similarity loss and self-attention module
(denoted as “w/o both"). Figure 6 illustrates two consecutive frames
from CutBunny video synthesized with Mondrian style images. We
can find that

Method Alley-1 Market-1 Temple-2 Sleeping-2 Shaman-2
w/o ssim 0.0048 0.0320 0.0156 0.0045 0.0055

w/o attention 0.0051 0.0349 0.0152 0.0043 0.0050
w/o both 0.0059 0.0400 0.0168 0.0049 0.0061
Ours 0.0039 0.0189 0.0113 0.0027 0.0037

Table 4: Ablation studies on SSIM loss with Candy style im-
age. Five scenes from the MPI Sintel Dataset are selected for
evaluation.

• The stylized frames of “w/o ssim" are less clear and lost
more texture details, demonstrating the importance of the
self-similarity on visual effect.

• The stylized frames of “w/o attention" have some obvious
flicker artifacts and discontinuity between consecutive styl-
ized frames, demonstrating the effectiveness of the self-attention
on preserving the local consistency.

• The performance of “w/o both" substantially degrades, which
indicates that both of them are critical to retaining the tem-
poral smoothness for video style transfer.

We futher show two exemplars of ablation study results on SSIM
sequence in Figure 7. It is interesting to observe that the SSIM
sequence of the stylized video by our method is closet to that of
the source video, which clearly demonstrates that our method is
able to preserve the global consistency over the entire video.

Table 3 shows the temporal errors of five testing videos with
Candy style image of different variants of our method. Besides the
temporal error, we also use the self-similarity loss to measure the
global temporal consistency of different variants of our method
and the results are shown in Table 4. It is obvious that our method
achieves smallest temporal error and SSIM loss value for all the
videos, further validating the effectiveness of our method on main-
taining the global consistency and local consistency simultaneously
for video style transfer.

5 CONCLUSIONS
We have presented a novel fast method for arbitrary video style
transfer. The proposed self-similarity loss enforces the temporal
structure similarity between the stylized video and the source video
and thus can preserve the global temporal consistency. The built self-
attention module learns the dependency between adjacent frames
and is able to maintain the local temporal coherence in videos.
Based on a feed-forward network with a transformation module,
our method is capable of performing real-time video stylizing with
the relief of on-the-fly optical flow computation. Experiment results
clearly demonstrate the superiority and efficacy of our method.
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