Preserving Global and Local Temporal Consistency for Arbitrary Video Style Transfer

Xinxiao Wu
Beijing Laboratory of Intelligent Information Technology,
School of Computer Science,
Beijing Institute of Technology,
Beijing 100081, China
wuxinxiao@bit.edu.cn

Jialu Chen
Beijing Laboratory of Intelligent Information Technology,
School of Computer Science,
Beijing Institute of Technology,
Beijing 100081, China
chenjialu@bit.edu.cn

ABSTRACT

Video style transfer is a challenging task that requires not only stylizing video frames but also preserving temporal consistency among them. Many existing methods resort to optical flow for maintaining the temporal consistency in stylized videos. However, optical flow is sensitive to occlusions and rapid motions, and its training processing speed is quite slow, which makes it less practical in real-world applications. In this paper, we propose a novel fast method that explores both global and local temporal consistency for video style transfer without estimating optical flow. To preserve the temporal consistency of the entire video (i.e., global consistency), we use structural similarity index instead of flow optical and propose a self-similarity loss to ensure the temporal structure similarity between the stylized video and the source video. Furthermore, to enhance the coherence between adjacent frames (i.e., local consistency), a self-attention mechanism is designed to attend the previous stylized frame for synthesizing the current frame. Extensive experiments demonstrate that our method generally achieves better visual results and runs faster than the state-of-the-art methods, which validates the superiority of simultaneously preserving global and local temporal consistency for video style transfer.

CCS CONCEPTS

• Information systems → Multimedia content creation; • Computing methodologies → Computer vision.

KEYWORDS

Video Style Transfer; Self-similarity; Self-attention

1 INTRODUCTION

Video style transfer has gained growing interests in recent years due to its wide applications in video entertainment, augmented reality, animation synthesis and art creation. Several methods [4, 20] extend style transfer from image to video and process each video frame independently without considering the temporal consistency in video. So the temporal inconsistency can be observed visually as flicker artifacts and discontinuity between consecutive stylized frames.

To address this problem, many methods [1, 19] introduce optical flow to initialize the optimization process and incorporate it into the loss function. Although impressive and smoothing stylized videos are obtained by these methods, their processing speed is quite slow, making them less practical in real-world scenarios. Several recent models [3, 5, 8] improve the speed of video style transfer by using feed-forward networks, and the optical flow is still used in the temporal loss as a guidance to maintain the temporal coherence between consecutive frames. Yet optical flow is sensitive to occlusions and rapid motions, which affects the visual quality of the synthesized videos.

In this paper, we propose a novel fast method that preserves both global and local temporal consistency for video style transfer, which achieves real-time processing speed, nice perceptual style quality, and coherent stylization. To maintain the global consistency over the entire video, a self-similarity loss is proposed to enforce the temporal structure similarity between the stylized video and the source video. The temporal structure describes self-similarity of the entire video, represented by a sequence of structural similarity index (SSIM). To further maintain the local coherence between consecutive frames, we design a self-attention module to learn the temporal dependency between adjacent frames, where the previous stylized frame is attended via attention weights for synthesizing the current frame. By this way, the self-similarity loss and self-attention module replace optical flow as model-free signals to preserve the temporal consistency in both global and local terms.

Our model is constructed by a feed-forward neural network under an encoder-decoder framework, coupled with the proposed self-attention module and a feature transformation module [12]. It is trained using the proposed self-similarity loss combined with a style loss and a content loss to simultaneously guarantee great style perceptual quality and coherent stylized effect.

In summary, the contributions of this work are:

• We propose a simple but efficient method for arbitrary video style transfer that preserves both global and local temporal
2 RELATED WORK

2.1 Video Style Transfer

Several previous methods [4, 20] formulate the video style transfer as an extension of image style transfer. Anderson et al. [1] extend [7] to video style transfer by using optical flow to initialize the style transfer optimization and incorporating the flow explicitly into the loss function. To reduce the artifacts at boundaries and occluded regions, Ruder et al. [19] introduce masks to filter out optical flow with low confidences in the loss function. Chen et al. [3] extend [10] to a feed-forward network for video style transfer. It first obtains the current result via a learned flow, and then reduces the artifacts at the occluded regions by fusing the warped result with the independently synthesized result via a learned occlusion mask. Gao et al. [5] propose a feature-map-level temporal loss to penalize variations in the high-level features of the same object in consecutive frames. All these video style transfer methods heavily rely on using optical flow to preserve temporal smoothness and using occlusion mask to stabilize the results. Instead of estimating optical flow, our method uses a self-similarity loss to constrain the structural similarity of the source video and the synthetic video, and a self-attention module to strengthen the temporal consistency in adjacent frames by learning the dependency between adjacent frames, which achieves coherent stylization and real-time processing speed.

2.2 Self-similarity

Structural similarity index (SSIM) [23] is measured from brightness, contrast and structure, which intuitively reflects the structural properties of objects in images. Because of its simple calculation and excellent performance, it is often used as an alternative method of signal-to-noise ratio and mean square error in video compression and reconstruction [22]. SSIM also has been applied to pattern recognition such as image classification [6, 18] where structural relevance of images is expressed by SSIM to learn more accurate image descriptors for recognition. Different from these methods, we make the first attempt to introduce SSIM into video style transfer by using it to represent the temporal self-similarity of the entire video and retain the temporal smoothness in videos.

2.3 Self-attention

Our self-attention module is related to the recent self-attention methods for image generation and machine translation [25]. Several recent works [16, 24] have used it for image style transfer. Park et al. [16] introduce the self-attention to flexibly match the semantically nearest style features onto the content features. Yao et al. [24] incorporate the self-attention into an auto-encoder network to capture the critical characteristics and long-range region relations of the input image. Different from these methods that use the self-attention mechanism to enhance the visual effect of the stylized images, we design a self-attention module to retain the temporal consistency of adjacent frames for video style transfer.

3 METHOD

3.1 Motivation

Directly employing style transfer models to video frames will cause strong flickering and distortions, and affect the visual effects of stylized videos. To tackle this problem, what we intuitively think of...
is how to explore the temporal consistency in videos for alleviating the flicker artifacts. Inspired by the fact that the structural similarity index (SSIM) can measure the self-similarity of a video and capture the temporal structure of the entire video, we propose a self-similarity loss based on SSIM to constrain the stylized video to have similar temporal structure as the source video for preserving the global temporal consistency. Furthermore, to maintain the temporal coherence between consecutive frames, we build a self-attention module to learn the temporal dependency between adjacent frames for synthesizing the current frame by attending previous stylized frames.

3.2 Overview

Given a source video \(X = \{x_1, \ldots, x_n\} \) and an arbitrary style image \(S \), our goal is to generate a new stylized video \(Y = \{y_1, \ldots, y_n\} \), where \(x_i \) and \(y_i \) represent the \(i \)-th source frame and the \(i \)-th stylized frame, respectively.

Our video style transfer model is built on an encoder-decoder module coupled with the proposed self-attention module and a transformation module. The encoder-decoder module aims to reconstruct the videos faithfully and is fixed when training. The self-attention module learns the temporal dependency between the previous stylized frame and the current synthesized frame, keeping the temporal smoothness and style correspondence between adjacent frames. The transformation module consists of two CNNs, aiming to learn a linear transformation between the content and style information more flexibly and efficiently. To calculate a style loss and a content loss, a loss module is constructed by a pre-trained VGG-19 network \([21]\). In the training process, our proposed self-similarity loss is combined with the style loss and the content loss to train our network, aiming to enforce the temporal structure similarity between the stylized video and the source video. Figure 1 illustrates the overview of our model.

3.3 Self-attention Module

For each video frame \(x_i \), its feature map \(F_{x_i} \) associated with the style image’s feature map \(F_S \) are given by the encoder module. Then we feed both \(F_x \) and \(F_S \) into the transformation module and produce the output feature map \(F_{d_i} \). In the self-attention module, the transformed feature map \(F_{d_i,1} \) of the previous frame \(x_{i-1} \) is attended and combined with the transformed feature map \(F_{d_i} \) of the current frame \(x_i \) to obtain the updated feature map \(F'_{d_i} \), formulated by

\[
F'_{d_i} = SANet(F_{d_i,1}, F_{d_i}),
\]

where SANet(·, ·) represents the self-attention module.

In the self-attention module as shown in Figure 2, we first feed the transformed feature map \(F_{d_i,1} \) of the previous frame \(x_{i-1} \) into one \(1 \times 1 \) convolution to obtain \(f(F_{d_i,1}) \), and feed the transformed feature map \(F_{d_i} \) of the current frame \(x_i \) into two \(1 \times 1 \) convolutions to obtain \(g(F_{d_i}) \) and \(h(F_{d_i}) \), respectively; given by

\[
\begin{align*}
f(F_{d_i,1}) &= W_f F_{d_i,1}, \\
g(F_{d_i}) &= W_g F_{d_i}, \\
h(F_{d_i}) &= W_h F_{d_i},
\end{align*}
\]

Figure 2: The network architecture of the self-attention module. The inputs are the transformed feature maps of the current video frame and its previous video frame. The output is the attended transformed feature map of the current video frame.

Then the attention map \(M \) is calculated by

\[
\begin{align*}
m_{k,j} &= \exp(s_{jk}) / \sum_{j=1}^{N} \exp(s_{jk}), \\
s_{jk} &= f(F_{d_i,1})^T g(F_{d_i})_k,
\end{align*}
\]

where \(m_{k,j} \) represents each element of the attention map \(M \), \(f(F_{d_i,1}) \) represents the \(j \)-th column of \(f(F_{d_i,1}) \), and \(g(F_{d_i})_k \) represents the \(k \)-th column of \(g(F_{d_i}) \). We multiply \(M \) with the output \(h(F_{d_i}) \) of the \(1 \times 1 \) convolution of the transformed feature map \(F_{d_i} \) to obtain \(R_{d_i} \):

\[
R_{d_i} = M \odot h(F_{d_i}),
\]

where \(\odot \) denotes the element-wise multiplication operator. Finally, the output \(F'_{d_i} \) of the self-attention module is calculated by

\[
F'_{d_i} = \delta v(R_{d_i}) + F_{d_i},
\]

where \(v(R_{d_i}) = W_v R_{d_i} \) represents a \(1 \times 1 \) convolution, and \(\delta \) is a learnable scalar with an initial value of 0.

In the decoder module, we reconstruct the attended feature map \(F'_{d_i} \) to generate the stylized video frame \(y_i \).

3.4 Self-similarity Constraint

In order to maintain the global temporal consistency in videos, we except that the stylized video has similar temporal structure to the source video.

In this work, the temporal structure of a video is represented by the temporal self-similarity over the entire video. We employ structural similarity index (SSIM) to represent the structure similarity of adjacent frames and then use the sequence of SSIM to describe the temporal self-similarity of a video. Accordingly, a novel self-similarity loss is proposed to constrain the stylized video to exhibit similar temporal self-similarity to the source video.

Given two consecutive frames \(x_{i-1} \) and \(x_i \), SSIM is defined as

\[
\text{SSIM}(x_{i-1}, x_i) = \frac{(2\mu_{x_{i-1}}\mu_{x_i} + c_1)(2\sigma_{x_{i-1}x_i} + c_2)}{(\mu^2_{x_{i-1}} + \mu^2_{x_i} + c_1)(\sigma^2_{x_{i-1}} + \sigma^2_{x_i} + c_1)},
\]

where \(\mu_{x_{i-1}} \) and \(\mu_{x_i} \) represent the means of \(x_{i-1} \) and \(x_i \) respectively, \(\sigma_{x_{i-1}} \) and \(\sigma_{x_i} \) represent the standard deviations of \(x_{i-1} \) and \(x_i \) respectively.
where σ_{x_i} is the covariance of x_{i-1} and x_i, c_1 and c_2 denote two constants.

For a source video $X = \{x_1, x_2, ..., x_n\}$, its self-similarity sequence is represented by $S_X = [S_1, S_2, ..., S_n]$ where S_i is given by

$$S_i = \begin{cases} 0 & i = 1, \\ SSIM(x_{i-1}, x_i) & \text{otherwise}. \end{cases} \quad (7)$$

In the same way, we can obtain the self-similarity sequence S_Y of the reconstructed video $Y = \{y_1, y_2, ..., y_n\}$.

Then the self-similarity loss is defined as the squared L2 norm between the self-similarity sequences S_X and S_Y, formulated by

$$||S_Y - S_X||_2^2. \quad (8)$$

Furthermore, to represent the structure similarity of two temporally distant video frames, SSIM is improved in a long-term way. Let L denote the number of interval frames between the two temporally distant video frames. For example, when $L = 3$, the long-term SSIM is calculated between the frames x_1 and x_4. Thus the long-term self-similarity sequence is represented by $S_{XL} = [S^L_1, S^L_2, ..., S^L_n]$ where S^L_i is given by

$$S^L_i = \begin{cases} 0 & i = n - L, \\ SSIM(x_{i-L}, x_i) & \text{otherwise}. \end{cases} \quad (9)$$

In the same way, we can obtain the long-term self-similarity sequence S_{YL} of the reconstructed video $Y = \{y_1, y_2, ..., y_n\}$. Accordingly, the long-term self-similarity loss can be defined as

$$||S_{YL} - S_{XL}||_2^2. \quad (10)$$

Finally, the overall self-similarity loss is given by

$$L_{\text{self-similarity}} = ||S_Y - S_X||_2^2 + ||S_{YL} - S_{XL}||_2^2. \quad (11)$$

3.5 Training and Testing

During the training process, we first feed the first frame of the source video and the style image into the network without the self-attention module and learn the synthetic feature map of the first frame. Then we feed the second frame of the source video and the style image into the network, and the feature maps of the previous frame and the current frame are used as the inputs of the self-attention module. And the same goes for the remaining frames.

Besides the proposed self-similarity loss, we also use a style loss L_{style} and a content loss L_{content} as prior work [7]. Thus the overall loss function L is formulated by

$$L = L_{\text{content}} + \alpha L_{\text{style}} + \beta L_{\text{self-similarity}}. \quad (12)$$

where α and β are hyper-parameters.

In the testing stage, given an input video $x = \{x_i\}_{i=1}^n$ and a style image, all of the frames are directly fed into the encoder frame-by-frame with the style image, their corresponding features are then learned by the transformation module, and finally the stylized video $y = \{y_i\}_{i=1}^n$ is generated via the decoder.

4 EXPERIMENTS

4.1 Datasets

To evaluate the effectiveness of our method, we use the FlyingThings3D and Monkaa datasets [14] as training videos and the MPI Sintel dataset [2] as testing videos. The FlyingThings3D dataset is a large dataset of everyday objects flying along randomized 3D trajectories, which contains around 25,000 frames. The Monkaa dataset is collected from animation short films with about 8,640 frames. The MPI Sintel dataset provides multiple real-world scenarios, which contains 35 videos. The WikiArt dataset [15] is used as the style image dataset, consisting of 11,025 images, and all the test style images are from published implementations [13].

4.2 Experiment Setup

Implementation Details. All the video frames are resized to 256×256. We train the model with a batch size of 2 by 500 iterations and use Adam optimizer [11] with a learning rate of 10^{-7}. The hyper-parameters of α and β are set to $\alpha = 0.02$ and $\beta = 50$, respectively. The number of interval frames in the long-term self-similarity loss is empirically set to $L = 3$. Our model is implemented using PyTorch V0.3 [17] with cuda on a single GTX TITAN X GPU. Code is available at: https://github.com/mcislab-machine-learning/videostyletransfer.

Comparison methods. We compare our method with several existing video style transfer methods such as [3, 5, 8, 19] and image style transfer methods such as [9, 12, 13]. We use the model proposed in [12] as our based model.

- ASTV [19] uses optical flow and occlusion mask to preserve the temporal smoothness with an optimization-based method.
- [3] proposes a recurrent model using feature maps of previous frame and consecutive frames as input with optical flow warping in both training and inference stages.
- [8] uses a feed-forward network with a temporal loss to avoid computing optical flow on the fly.
- Reconet [5] incorporates a luminance warping constraint to capture the luminance changes between consecutive frames and increase the stylization stability.
- AdaIN [9] is a classical arbitrary image style transfer method that adjusts the mean and variance of the content input to match those of the style input.
- [12] learns a transformation matrix that is efficient for arbitrary image style transfer.

4.3 Results

Qualitative Results. Figure 3 shows two examples of two consecutive frames from Alley-1 and Temple-3 videos, respectively, stylized by ASTV and our method with Candy style image, where two local regions for each frame zoom in for detailed demonstration. Since the other video style transfer methods (i.e., [3, 5, 8]) do not release the trained models or the complete training data, we can not reproduce the stylized video frames from these methods for qualitative comparison. From Figure 3, we can have the following observations:

- As shown in Figure 3(b), unexpected color changes appear in some regions of the stylized video frames generated by
Figure 3: Qualitative comparison results between ASTV and our method. There are two examples of two consecutive frames from Alley-1 and Temple-3 videos, respectively, with Candy style image.

ASTV [19], which causes obvious flickers and distorts the content.
• While the stylized video frames generated by our method performs more consistent and stable, as shown in Figure 3(c), which verifies that our method succeeds in preserving the temporal consistency in both long and short terms.
• Furthermore, the texture in our stylized frames is more authentic, which validates that our method performs better than ASTV in maintaining the detailed content of the source video.

Figure 4 shows two examples of two consecutive frames from CutBunny video that are stylized with Mondrian style image by the image style transfer methods (i.e., AdaIN [9], OST [13] and the base model [12]) and our method. The first two columns demonstrate the object motion and the last two columns show the static scene. From Figure 4, it is interesting to observe that

- The synthesized videos by AdaIN and OST have obvious flicker and incoherence obviously in color blocks and object boundary.
- The base model produces unexpected color changes such as the sky and the rabbit that also causes obvious flicker.
- Our method maintains the continuity of video in both object motion and static scene scenarios, which clearly validates the benefits of the self-attention module and the self-similarity loss.

To further demonstrate the difference between the base model [12] and our proposed model, Figure 5 shows two examples of consecutive frames from two different videos (Ambush-5 and Ambush-1) stylized with Candy style image by the base model and our proposed model, where two local regions for each frame zoom in for demonstrations in detail. We can observe that

- Our model captures more detailed texture information. For example, the stone texture looks clearer and more authentic, as shown in the blue and green boxes of Figure 5(c).
- Our model generates more consistent and stable stylized videos. For example, the continuity of the brightness is kept well. While the base model produces unexpected color changes, as shown in red and yellow boxes of Figure 5(c).

All these observations clearly validate that our model not only effectively maintains the temporal consistency, but also retains content details well via the proposed self-similarity loss and self-similarity module.

Quantitative Results. To quantitatively evaluate the temporal consistency captured by the proposed method, we compare the temporal errors of stylized videos between different video style
Figure 4: Qualitative comparison results between the image style transfer methods (AdaIN, OST and the base model) and our method. There are two examples of two consecutive frames from CutBunny video with Mondrian style image. The left two columns demonstrate the object motion and the right two columns show the static scene.

transfer methods on the MPI Sintel Dataset with Candy style image, as reported in Table 1. The results of all the compared methods are directly copied from their original papers. The temporal error e_{tep_err} is defined by the average pixel-wise Euclidean color difference of consecutive frames [8]:

$$e_{tep_err} = \sqrt{\frac{1}{(n-1) \times D} \sum_{i=1}^{n-1} M_i ||y_i - W_i(y_{i-1})||^2},$$

where n represents the total number of frames, $D = H \times W$ represents the multiplication of height H and width W of the input/output image, M_i is the ground-truth forward occlusion mask, and W_i is the ground-truth forward optical flow. y_{i-1} and y_i denote the stylized previous and current frames, respectively.

<table>
<thead>
<tr>
<th>Method</th>
<th>Alley-2</th>
<th>Ambush-5</th>
<th>Bandage-2</th>
<th>Market-6</th>
<th>Temple-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3]</td>
<td>0.0934</td>
<td>0.1352</td>
<td>0.0715</td>
<td>0.1030</td>
<td>0.1094</td>
</tr>
<tr>
<td>Reconet [5]</td>
<td>0.0846</td>
<td>0.0819</td>
<td>0.0662</td>
<td>0.0862</td>
<td>0.0831</td>
</tr>
<tr>
<td>[8]</td>
<td>0.0439</td>
<td>0.0675</td>
<td>0.0304</td>
<td>0.0553</td>
<td>0.0513</td>
</tr>
<tr>
<td>ASTV[19]</td>
<td>0.0252</td>
<td>0.0512</td>
<td>0.0195</td>
<td>0.0407</td>
<td>0.0361</td>
</tr>
<tr>
<td>Ours</td>
<td>0.0205</td>
<td>0.0604</td>
<td>0.0141</td>
<td>0.0853</td>
<td>0.0474</td>
</tr>
</tbody>
</table>

Table 1: Temporal errors of different methods in the testing stage with Candy style image. Five scenes from the MPI Sintel Dataset are selected for evaluation.

From Table 1, we can notice that our method generally achieves lower temporal error than other methods in most cases, which
validates the effectiveness of replacing optical flow with the self-similarity loss and the self-attention model. Compared with ASTV, our method works worse for some videos such as Market-6 and Temple-2, probably due to that ASTV is an optimized-based method and uses the temporal error as the optimization objective.

Table 2 shows the run time of ASTV and our method using different frame scales: 256×256, 360×640, 436×1024. It is interesting to observe that our model is superior in computation cost and reaches real-time processing speed, owing to the efficient network design and avoidance of optical flow calculation. Although ASTV achieves good results on preserving style information and low temporal error (as shown in Table 1), it has very high computation cost, which makes it unfeasible for real-time video style transfer.
4.4 Ablation Studies

We conduct ablation studies by comparing our method with three variants: without the self-similarity loss (denoted as "w/o ssim"), without the self-attention module (denoted as "w/o attention"), and without both total self-similarity loss and self-attention module (denoted as "w/o both"). Figure 6 illustrates two consecutive frames from CutBunny video synthesized with Mondrian style images. We can find that

- The stylized frames of "w/o ssim" are less clear and lost more texture details, demonstrating the importance of the self-similarity on visual effect.
- The stylized frames of "w/o attention" have some obvious flicker artifacts and discontinuity between consecutive stylized frames, demonstrating the effectiveness of the self-attention on preserving the local consistency.
- The performance of "w/o both" substantially degrades, which indicates that both of them are critical to retaining the temporal smoothness for video style transfer.

We further show two exemplars of ablation study results on SSIM sequence in Figure 7. It is interesting to observe that the SSIM sequence of the stylized video by our method is closest to that of the source video, which clearly demonstrates that our method is able to preserve the global consistency over the entire video.

Table 3 shows the temporal errors of five testing videos with Candy style image of different variants of our method. Besides the temporal error, we also use the self-similarity loss to measure the global temporal consistency of different variants of our method and the results are shown in Table 4. It is obvious that our method achieves smallest temporal error and SSIM loss value for all the videos, further validating the effectiveness of our method on maintaining the global consistency and local consistency simultaneously for video style transfer.

5 CONCLUSIONS

We have presented a novel fast method for arbitrary video style transfer. The proposed self-similarity loss enforces the temporal structure similarity between the stylized video and the source video and thus can preserve the global temporal consistency. The built self-attention module learns the dependency between adjacent frames and is able to maintain the local temporal coherence in videos. Based on a feed-forward network with a transformation module, our method is capable of performing real-time video stylizing with the relief of on-the-fly optical flow computation. Experiment results clearly demonstrate the superiority and efficacy of our method.

ACKNOWLEDGMENTS

This work was supported in part by the Natural Science Foundation of China (NSFC) under Grant No.61673062.

REFERENCES

