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Joint Learning of Multiple Latent Domains and
Deep Representations for Domain Adaptation
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Abstract—In domain adaptation, the automatic discovery of
multiple latent source domains has succeeded by capturing the
intrinsic structure underlying the source data. Different from
previous works that mainly rely on shallow models for domain
discovery, we propose a novel unified framework based on deep
neural networks to jointly address latent domain prediction from
source data and deep representation learning from both source
and target data. Within this framework, an iterative algorithm
is proposed to alternate between 1) utilizing a new probabilistic
hierarchical clustering method to separate the source domain into
latent clusters and 2) training deep neural networks by using the
domain membership as the supervision to learn deep representa-
tions. The key idea behind this joint learning framework is that
good representations can help to improve the prediction accu-
racy of latent domains and, in turn, domain prediction results
can provide useful supervisory information for feature learn-
ing. During the training of the deep model, a domain prediction
loss, a domain confusion loss, and a task-specific classification
loss are effectively integrated to enable the learned feature to
distinguish between different latent source domains, transfer
between source and target domains, and become semantically
meaningful among different classes. Trained in an end-to-end
fashion, our framework outperforms the state-of-the-art methods
for latent domain discovery, as validated by extensive experi-
ments on both object classification and human action-recognition
tasks.

Index Terms—Deep feature learning, domain adaptation, latent
domain discovery, probabilistic hierarchical clustering.

I. INTRODUCTION

MANY EXISTING studies have shown that domain adap-
tation methods can successfully solve the problem of

dataset bias by reducing the domain distribution mismatch
between different domains. With the ability to learn robust
classifiers for a new and unexpected target environment,
domain adaptation methods have been extensively studied
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in many visual-recognition tasks, such as object classifica-
tion [1]–[10], object detection [11]–[13], and video-event
recognition [14]–[16].

Most existing domain adaptation methods are either
restricted to a single domain or treat each dataset as one
domain. However, in practice, datasets for visual recognition
usually are not deliberately collected with clearly identifiable
domains due to many extraneous factors, such as intracategory
appearance and pose variations, cluttered background, and var-
ious occlusions. Several existing works [17]–[19] reveal that a
large amount of images or videos from one dataset may consist
of multiple unknown domains and, thus, focus on automati-
cally discovering multiple latent source domains for domain
adaptation. All of these methods rely on first extracting the
visual feature and then training a shallow model to exploit
latent domains where feature learning and model training are
independently handled.

This paper proposes a joint learning framework based on
deep neural networks for simultaneously handling both latent
domain discovery and representation learning tasks under a
unified architecture, as shown in Fig. 1. In this framework,
an iterative optimization algorithm is proposed to couple a
clustering algorithm with deep neural networks, by alter-
nating between utilizing the clustering method to discover
latent source domains and training the deep networks with the
domain membership as a supervision to learn the deep rep-
resentations for all of the data. By combining latent domain
discovery and representation learning into a unified architec-
ture and optimizing it in an end-to-end manner, we can obtain
not only more powerful representations but also more precise
multiple latent source domains.

Specifically, a new probabilistic hierarchical clustering
method is employed to divide the source domain into sev-
eral latent clusters. Each source data is assigned a set of
probabilities belonging to the multiple clusters. The deep
model consists of a source convolutional neural network
(CNN) and a target CNN with shared weights. In the
training phase, the deep model is learned by optimizing
over a domain prediction loss and a task-specific classifi-
cation loss (e.g., object classification loss or action classi-
fication loss in our experiments). This enables the learned
deep feature to be both latent domain distinguishing and
semantically meaningful. Meanwhile, in order to reduce the
data distribution discrepancy between the source and tar-
get domains, an additional domain confusion loss is intro-
duced to enhance the feature transferability between different
domains.
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Fig. 1. Overview of the joint learning framework of multiple latent domains and deep representation for domain adaptation.

Overall, the main contributions are as follows.
1) We propose a novel deep neural-network-based frame-

work for domain adaptation, which jointly learns
multiple latent source domains and deep representations
for both source and target data.

2) We formulate joint learning as a new unified end-to-
end training process that alternates between hierarchical
clustering and representation learning by deep neural
networks.

3) Extensive experiments on both object classification and
action-recognition tasks show that the proposed frame-
work outperforms the existing methods in discovering
latent domains. In addition, our framework also achieves
better results than other deep adaptation methods by
effectively transferring the adapted classifiers learned
on the discovered multiple latent source domains to the
target domain.

The organization of the rest of this paper is given as
follows. In Section II, we summarize the related works
of latent domains discovery and deep domain adaptation.
Section III describes the proposed method for domain adap-
tation based on identifying multiple latent source domains,
including probabilistic hierarchical clustering, network archi-
tecture, and iterative algorithms. Section IV elaborates on the
experimental result and analysis. The conclusion is made in
Section V.

II. RELATED WORK

A. Latent Domains Discovery

In terms of discovering multiple latent source domains,
several papers [17]–[20] are closely related to this
paper. Hoffman et al. [17] proposed a clustering-based method
to discover the latent domains by deriving a hierarchically
constrained assignment algorithm. Gong et al. [18] proposed
a nonparametric method to automatically partition the source

data into multiple latent domains which can simultaneously
maximize the distinctiveness and learnability of the extracted
domains. Xiong et al. [20] first proposed a novel local sub-
space representation for each data with the help of the relation-
ship to its neighbors of the same category and then introduced
the mutual information between subspace representation and
domain identification as well as the prior distribution of the
category in each domain for domain adaptation. Different from
the above methods [17], [18], [20], Li et al. [19] proposed
an exemplar-SVMs-based approach for both domain adapta-
tion and generalization by explicitly exploiting the intrinsic
structure of positive samples from multiple latent domains
without dividing the training samples into multiple domains
(or clusters). Different from these shallow methods, our deep
model-based method simultaneously addresses domain discov-
ery and feature learning in a unified framework, significantly
improving domain adaptation performance.

A recent method [21] based on the deep neural network is
most related to our method, which introduces novel domain
alignment layers and a side branch into CNN to discover latent
domains for boosting domain adaptation. Compared with this
paper, our method is based on an iterative procedure between
traditional clustering and deep model training with more flex-
ibility, and any existing clustering method and CNN model
can be easily embedded into our architecture. In addition, our
method can be readily applied to any multiple source domain
adaptation methods.

B. Deep Domain Adaptation

From the perspective of domain adaptation enabled by
deep neural networks, this paper is more related to [5] and
[22]–[29]. Tzeng et al. [22] introduced an adaptation layer
into a traditional CNN architecture and design an additional
domain confusion loss in the objective function for the pur-
pose of reducing the data bias between different domains.
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Long et al. [23] proposed a new deep adaptation network that
reduces the domain discrepancy in higher task-specific lay-
ers using an optimal multikernel selection method for mean
embedding matching. Ganin and Lempitsky [25] introduced
a simple new gradient reversal layer in deep architectures
for unsupervised domain adaptation. Through the standard
backpropagation training progress, the learned deep features
perform invariant to the shift between different domains and
discriminative for the task on the source domain. In [26],
a new deep domain adaptation approach is proposed to
jointly learn adaptive classifiers and transferable features
using labeled source domain data as well as unlabeled tar-
get domain data, under the assumption that the difference
between the source and target classifiers is represented by a
residual function. In [27], a novel architecture called domain
separation networks is proposed to learn domain-invariant
representations by exploiting both private and shared com-
ponents of feature representations for both source and target
domains. Tzeng et al. [28] proposed a unified deep framework
called adversarial discriminative domain adaptation to handle
unsupervised domain adaptation by combining discriminative
modeling, untied weight sharing, and generative adversarial
network (GAN) loss. In [29], a joint adversarial discrimina-
tive approach that leverages unsupervised data is proposed
to transfer the information of the target distribution to the
learned joint feature space using a generator–discriminator
pair. Long et al. [24] proposed a joint distribution discrepancy
of features and labels to measure the domain distance between
different domains, and learn a set of joint adaptation networks
by minimizing the joint distribution discrepancy. In contrast
to these deep domain adaptation methods that are restricted to
a single training domain, our proposed method is capable of
automatically discovering the multiple hidden domains by cou-
pling a deep model with a probabilistic hierarchical clustering
strategy.

III. DEEP NEURAL NETWORKS WITH PROBABILISTIC

HIERARCHICAL CLUSTERING

Primarily focusing on an unsupervised scenario where the
labeled source data are accompanied by unlabeled target data
in the training phase, our goal is to simultaneously calcu-
late the latent domain probabilities for the source data and
learn the visual features for both source and target domains.
Motivated by the effectiveness of deep neural networks in
a variety of visual tasks, we employ a deep CNN for joint
latent domain discovery and feature learning. Since automat-
ically discovering the probabilities of a sample from multiple
latent source domains is an unsupervised learning problem
that cannot be easily handled by CNN, we couple the CNN
model with a probabilistic hierarchical clustering method to
convert unsupervised learning into supervised learning. It alter-
nates between clustering the source data to predict the domain
probabilities and training CNN models by using the pre-
dicted domain membership to supervise learning the deep
representations of both source and target domains.

Given a source domain Ds and a target domain Dt, let
Xs = {xs

i |ns
i=1} represent the labeled source data of ns samples,

where xs
i is the feature of the ith source sample and Ys =

{ys
i |ns

i=1} are the corresponding category labels of Xs, where
ys

i ∈ {1, 2, . . . , C} is the label of xs
i . The unlabeled target

data of nt samples is represented by Xt = {xt
i|nt

i=1}, where
xt

i is the feature of the ith target sample. Suppose there are
K latent domains to be discovered, pk

i ∈ [0, 1] represents the
probability that the ith source sample xs

i is assigned to the
kth latent domain, where k ∈ {1, . . . , K}. For each xs

i ∈ Xs,
let Pi = {pk

i |Kk=1} denote the probability distribution of latent
domain assignments for xs

i with the constraint of
∑K

k=1 pk
i = 1.

A. Probabilistic Hierarchical Clustering

Discovering latent domains in the source domain is dif-
ficult since the data are naturally separated according to
semantic categories in many cases. Thus, the data tend to
be clustered according to the category labels via traditional
clustering methods, such as k-means, which contradicts the
fact that samples within the same category are likely to
come from multiple domains. Our clustering method can solve
this problem by simultaneously considering the category and
domain information. Different from [17], which constrains
each sample to be assigned to one latent domain, our method
calculates a set of probabilities for each sample that assigns
it to multiple latent domains. Our method has two stages. In
the first stage, the Gaussian mixture model is employed to
model the probability distribution of source domain samples
in which each Gaussian component corresponds to one local
cluster. In the second stage, an EM-style algorithm is used to
determine the division of the source domain by assigning the
local clusters to the latent domains.

Let C and K denote the numbers of semantic categories
and latent domains to be discovered, respectively. Given the
source domain data samples Xs = {xs

i |ns
i=1} and the correspond-

ing category labels Ys = {ys
i |ns

i=1} with ys
i ∈ {1, 2, . . . C}, the

data samples within the same category are grouped into M
local clusters, and then the total number of local clusters is
J = M · C. For each local cluster, a single Gaussian compo-
nent is utilized to model its probability distribution, denoted
by the parameter set {πjcm , μjcm , δjcm}, where πjcm , μjcm , and δjcm
are the weight, mean, and variance of the mth single Gaussian
model in the cth category, respectively. Let jcm represent the
mth local cluster of the cth category with m ∈ {1, . . . , M} and
c ∈ {1, . . . , C}, and pL

i,jcm
∈ [0, 1] represents the probability that

the data sample xs,c
i of the cth category is assigned to the local

cluster jcm. We alternately optimize pL
i,jcm

and {πjcm, μjcm , δjcm}.
Specifically, with the fixed parameter set {πjcm , μjcm , δjcm}, pL

i,jcm
is calculated by

pL
i,jcm

= πjcmN
(
xs,c

i |μjcm , δjcm

)

∑M
q=1 πjcqN

(
xs,c

i |μjcq , δjcq

) (1)

where N(·) denotes the single Gaussian model. With the fixed
pL

i,jcm
, the parameters {πjcm, μjcm , δjcm} are formulated by

πjcm =
∑nc

i=1 pL
i,jcm

nc
, μjcm =

∑nc
i=1 pL

i,jcm
· xs,c

i
∑nc

i=1 pL
i,jcm

(2)
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Fig. 2. Process of probabilistic hierarchical clustering. There are three latent domains and two categories. For each category, the data are divided into three
local clusters. Different shapes represent different categories. Different colors represent different latent domains. The solid circle and star represent the mean
of a local cluster and the mean of a latent domain, respectively. (This figure is best viewed in color.)

δjcm =
∑nc

i=1 pL
i,jcm

(
xs,c

i − μjcm

)(
xs,c

i − μjcm

)T

∑nc
i=1 pL

i,jcm

(3)

where nc is the number of samples in the cth category.
After modeling the local clusters using a Gaussian mix-

ture model, an EM-style iterative algorithm is adopted to
estimate the optimal latent domains by assigning the local
clusters to the latent domains. With the constraint that each
latent domain must have only one local cluster from each cat-
egory, the number of latent domains, therefore, is equal to the
number of local clusters in each category, that is, M = K.
Then, for each category, the number of all possible assign-
ments of local clusters to latent domains is AK = K! Let
Wc ∈ Z

AK×K represent all assignments for the cth category.
Then, if Wc(σ, k) = m, it means that the mth local cluster in
the cth category is assigned to the kth latent domain under the
σ th assignment, where σ represents the index of the assign-
ment with σ ∈ {1, . . . , AK}. Each latent domain is represented
by its mean and we use uk to indicate the mean of the kth latent
domain with k ∈ {1, 2, . . . , K}. Let pG

jcm,k indicate the probabil-
ity that the local cluster jcm is assigned to the kth latent domain.
First, randomly initialize uk and then alternately update pG

jcm,k

and uk. With the fixed uk, pG
jcm,k is calculated by

pG
jcm,k =

∑Ak
σ=1 1Wc(σ,k)=m

1
d(μjc ,u|σ)

∑Ak
σ=1

1
d(μjc ,u|σ)

(4)

where μjc = {μjc1
, μjc2

, . . . , μjcM
} represents the set of means

of local clusters in the cth category and u = {u1, u2, . . . , uK}
represents the set of means of latent domains. 1Wc(σ,k)=m is
an indicator function which represents that if Wc(δ, k) = m,
the value of 1Wc(σ,k)=m is 1 and otherwise is 0. d(μjc , u|σ)

denotes the Euclidean distance between the set of means of
local clusters in the cth category and the set of means of latent
domains under the σ th assignment, given by

d
(
μjc , u|σ ) =

K∑

k=1

∥
∥
∥μjcWc(σ,k)−uk

∥
∥
∥

2
(5)

where ‖ · ‖2 denotes the l2-norm. With the fixed pG
jcm,k, uk is

updated by the weighted average of all means of the local
clusters from all categories

uk =
∑C

c=1
∑M

m=1 pG
jcm,k · μjcm

M · C
(6)

where μjcm represents the mean of the mth local cluster in the
cth category, pG

jcm,k is the weight of μjcm and actually indicates
the probability of assigning the mth local cluster in the cth
category to the kth latent domain, and M · C is the number of
all the local clusters. Finally, the probability pk

i that xs
i belongs

to the kth latent domain is computed by

pk
i =

M∑

m=1

pL
i,jcm

· pG
jcm,k. (7)

The probability distribution of the latent domain assignment
for xs

i is represented by Pi = {pk
i |Kk=1}, where

∑K
k=1 pk

i =
1. Fig. 2 simply demonstrates the process of probabilistic
hierarchical clustering.

B. Network Architecture

As shown in Fig. 1, our deep architecture consists of a
source CNN and a target CNN with shared weights. We extend
the AlexNet architecture [30], which is a proven powerful
model when adapting to novel tasks. It contains eight learned
layers, including five convolutional layers (conv1–conv5) and
three fully connected layers (fc6–fc8).

Given the training source data Xs = {xs
i |ns

i=1} with the
corresponding latent domain probabilities P = {Pi|ns

i=1}, we
design a latent domain prediction loss Lr(Xs, P) on the fc8
layer to enable the learned deep representations distinguishable
between different latent domains, formulated by

Lr(Xs, P) = 1

ns

ns∑

i=1

E
(
θr

(
xs

i

)
, Pi

)
(8)
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where E(·) is an Euclidean loss function and θr(xs
i ) is a set

of conditional probabilities that assign xs
i to multiple latent

domains in the CNN.
Given the training source data Xs with the corresponding

task-specific (e.g., object classification or action recognition
in our experiments) category labels Ys, a task-specific clas-
sification loss Lc(Xs, Ys) is added on the fc8 layer to make
the representations semantically meaningful across different
categories, defined as

Lc(Xs, Ys) = 1

ns

ns∑

i=1

F
(
θc

(
xs

i

)
, ys

i

)
(9)

where F(·) represents the cross-entropy loss and θc(xs
i ) is the

condition probability of classifying the sample xs
i into the task-

specific category label ys
i .

In standard CNNs, deep representations change from gen-
eral to specific, and eventually its transferability difficulty
increases with the discrepancy of domains. Therefore, it is par-
ticularly difficult to transfer representations in the higher layers
fc6–fc8. Since the fc layers cannot be directly transferred from
the source to the target by just fine-tuning the original source
CNN with limited target training data, we introduce a domain
confusion loss and place it on top of the fc7 and fc8 layers
to make the representation invariant to the source and target
domains. This domain confusion loss Ld(Xs, Xt) is represented
by the maximum mean discrepancy (MMD) [31], which mea-
sures the distance between the source domain and the target
domain based on kernels, defined by

Ld(Xs, Xt) =
∥
∥
∥
∥
∥

1

ns

ns∑

i=1

φ
(
xs

i

) − 1

nt

nt∑

i=1

φ
(
xt

i

)
∥
∥
∥
∥
∥

2

= 1

n2
s

ns∑

i=1

ns∑

j=1

k
(

xs
i , xs

j

)
+ 1

n2
t

nt∑

i=1

nt∑

j=1

k
(

xt
i, xt

j

)

− 2

ns · nt

ns∑

i=1

nt∑

j=1

k
(

xs
i , xt

j

)
(10)

where φ(·) defines a representation operating on ns labeled
source data xs

i ∈ Xs and nt unlabeled target data xt
i ∈ Xt. A

characteristic kernel k(xs
i , xt

i) = 〈φ(xs
i ), φ(xt

i)〉 is defined as a
linear combination of m PSD kernels {ku}

K �
{

k =
m∑

u=1

βuku :
m∑

u=1

βu = 1, βu ≥ 0, ∀u

}

(11)

where βu is the weight for the uth kernel. In our experiments,
we use an RBF kernel e−(1/2γ )‖xs

i −xt
i‖2

with the bandwidth γ

which is set to the median pairwise distances on the train-
ing data. The constraints on coefficients {βu} are imposed to
guarantee that the derived multikernel k is characteristic and
learned by the strategy in DAN [23]. We vary the bandwidth γu

between 2−8γ and 28γ with a multiplicative step-size of 21/2.
Due to the distribution change of the shared features during
learning, it is beneficial to have a large range of kernels.

By effectively combining the latent domain prediction loss
Lr(Xs, P), the classification loss Lc(Xs, Ys), and the domain

confusion loss Ld(Xs, Xt), the final optimization problem to
train the deep model can be given by

min
	

(Lr(Xs, P) + Lc(Xs, Ys) + Ld(Xs, Xt)) (12)

where 	 = {(Wl, bl)|Ll=1} denotes the parameter set of the
CNN model with the weights Wl and bias bl of the lth fc
layer. Since the source CNN and the target CNN share the
same network architecture with the same weights, the learned
features of both source and target data become distinguish-
able regarding different latent source domains, discriminative
regarding different categories, and transferable across different
domains with the help of Lr(Xs, P), Lc(Xs, Ys), and Ld(Xs, Xt).

C. Iterative Algorithm

We first extract the initial features Xs of the source domain
Ds using the output of fc7 layer in the AlexNet [30]. We then
calculate the domain probability distributions P of Ds based
on the current Xs using the clustering method described in
Section III-A. Next, we train the CNN model described in
Section III-B with the predicted latent domain probabilities P
and the given task-specific category labels Ys as a supervision
to update the source features Xs and the target features Xt. The
above steps are repeated until the learned feature converges
or the maximum number of iterations is reached. The detailed
iterative optimization algorithm is summarized in Algorithm 1.

IV. EXPERIMENTS

Our framework is validated on both visual object classifica-
tion and human action-recognition tasks. First, we introduce
the datasets with an evaluation strategy, and then describe the
experimental settings. After that, we report the recognition
accuracies of adapted classifiers from the source domain to the
target domain by identifying multiple latent source domains
and compare our method with other related methods.

A. Datasets

For object recognition, we use images from the datatsets of
ImageNet (I) [30], Caltech-256 (C) [32], Pascal VOC (P) [33],
and Bing (B) [34]. A total of 12 common categories among
the four datasets are adopted in our experiment, including “air-
plane,” “bike,” “bird,” “boat,” “bottle,” “bus,” “car,” “dog,”
“horse,” “monitor,” “motorbike,” and “people.” For each cate-
gory in each dataset, about 100 images are randomly selected
to construct the training and test data. The target domain is
composed of unlabeled images from one dataset while the
source domain is constructed by the labeled images from the
remaining three datasets. We permute all of the domain combi-
nations and set up four domain adaptation tasks: 1) CPB → I;
2) IPB → C; 3) ICB → P; and 4) ICP → B. For each cat-
egory in the target domain, 30 images are randomly selected
to construct the dataset for training, and the remaining images
are used for testing.

For human action recognition, the source domain is com-
posed of the images from the Stanford40 dataset [35], and
the target domain consists of the videos from the UCF101
dataset [36]. There are a total of 12 common action classes
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Algorithm 1 Deep Neural Networks With Constrained Clustering for Latent Domain Discovery
Input: The Source domain Ds, the task-specific category labels Ys of Ds, the target domain Dt, and the number of domains

K.
Output: Latent domain probability distributions P of Ds, the deep features Xs and Xt of Ds and Dt, respectively.

1: Extract the initial features Xs and Xt from the fc7 layers of the source CNN and target CNN, respectively.
2: repeat
3: Compute the probabilities pL

i,jcm
, i ∈ {1, 2, ..., ns} that the source data Xs are assigned to the local clusters jcm, m ∈

{1, 2, ..., M}, c ∈ {1, 2, ..., C} by Eq.(1).
4: Randomly initialize the means of latent domains uk,k ∈ {1, 2, ..., K}.
5: repeat
6: Compute the probabilities pG

jcm,k that the local clusters jcm are assigned to the latent domains by Eq.(4).
7: Update the means of latent domain uk by Eq.(6).
8: until Converge
9: Compute the latent domain probability distributions P = {Pi|ns

i=1} where Pi = {pk
i |Kk=1} using pL

i,jcm
and pG

jcm,k by Eq.(7).
10: Train the source and target CNN models with Ds, Dt, Ys and P by Eq.(12).
11: Extract the new features X̂s and X̂t from the fc7 layers of the updated source CNN and target CNN, respectively.
12: Update Xs and Xt by X̂s ⇒ Xs and X̂t ⇒ Xt.
13: until Converge

Fig. 3. Illustration of several image examples for (a) object classification and (b) action recognition.

among the two datasets, including “brushing teeth,” “clean-
ing floor,” “climbing,” “cutting vegetables,” “playing guitar,”
“playing violin,” “biking,” “ horse riding,” “rowing,” “shoot-
ing,” “walking with dog,” and “writing on a board.” For each
class in the target domain, 50 videos are randomly chosen
for training, and the remaining samples are taken for testing.
For the videos, the dynamic image [37] for each sample is
extracted to capture the motion formation of actions and used
as the input to the CNN of the target domain. Some image
examples for object classification and action recognition are
illustrated in Fig. 3.

To evaluate the effectiveness of our approach, we focus
on investigating whether the recognition performance on the
target domain can be improved by automatically discov-
ering multiple latent source domains for domain adapta-
tion. Specifically, we employ several multiple source-domain

adaptation methods (i.e., DSM [38], DAM [39], M-GFK,
M-LRSR, M-TJM, and MDAN [42]) to adapt the classi-
fiers trained on the identified latent domains to the target
domain and use the recognition accuracy on the target domain
to validate the performance of the latent domains. DSM,
DAM, and MDAN are multiple-domain adaptation methods
and GFK [1], LRSR [40], and TJM [41] are single-domain
adaptation methods.

1) DSM selects the most relevant source domain to adapt
to the target domain, which enforces the target classifier
to share the same decision values with the corresponding
source classifiers.

2) DAM proposes a new framework for learning a
target classifier by using a set of classifiers pre-
trained on labeled samples from multiple source
domains.
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3) MDAN proposes a novel multisource-domain adversar-
ial network.

4) GFK proposes a geodesic flow kernel in order to
leverage low-dimensional feature structures.

5) LRSR transforms both the source and target data to a
shared feature space, in which source samples can be
effectively combined to represent each sample in the
target domain.

6) TJM learns a feature space to minimize the domain
distance by a newly designed transfer joint matching
algorithm and reweights the source instances irrelevant
to the target instances with less importance.

For multiple domain adaptation, we extend the single-domain
adaptation methods of GFK, LRSR, and TJM into the mul-
tidomain version, called M-GFK, M-LRSR, and M-TJM,
respectively, by averaging the decision values obtained from
the classifiers trained on all source domains.

To evaluate the effectiveness of utilizing the deep neural
networks for latent domain discovery, we compare our deep
model with several traditional shallow models: Latent [17],
Reshape [18], and LRE-SVMs [19]. For these three methods,
the output from the fc7 layer of the AlexNet [30] is used
as the visual representation. For the Latent method, we set
the threshold of terminating iteration to 0.001 and the maxi-
mum iteration number to 5. For the Reshape method, we use
Gaussian kernels and the kernel bandwidth is set to be twice
the median distances of all pairwise data points. For the LRE-
SVMs method, we set the relaxation factor C in SVM to 0.001
and the tradeoff parameter λ to 1.

To validate the advantage of exploiting multiple latent
source domains for domain adaption in the deep architec-
ture, our method is also compared with a variety of deep
domain adaptation methods: CNN [30], DDC [22], DAN [23],
RevGrad [25], RTN [26], JAN [24], AutoDIAL [43],
WDGRL [44], and mDA [21].

1) CNN is a powerful deep network for learning transfer-
able and discriminative features.

2) DDC adds an adaption layer between the fc7 and fc8
layers to maximize domain invariance and designs an
additional domain confusion loss in the objective func-
tion to reduce the data bias between different domains.

3) DAN introduces multiple kernel learning to match the
mean embeddings of the source and target data distri-
butions for reducing the domain discrepancy in higher
task-specific layers of deep neural networks.

4) RevGrad introduces a simple new gradient reversal layer
in deep architectures to learn the deep features that are
discriminative for the task on the source domain and
invariant with respect to the shift between the domains.

5) RTN jointly learns adaptive classifiers and transferable
features from labeled source data and unlabeled tar-
get data with the assumption that the main difference
between the source and target classifiers is formulating
a residual function.

6) JAN reduces the domain shift by aligning the joint dis-
tributions of multiple domain-specific layers, which is
implemented by jointly maximizing mean discrepancies
of feature distributions of these layers.

7) AutoDIAL resorts to aligning both source and target dis-
tributions to a reference one, which is implemented by
adding new domain alignment layers to a deep neural
network to handle the domain discrepancy.

8) WDGRL takes advantage of the gradient property of
Wasserstein distance to reduce the domain discrepancy,
and the transferability is guaranteed by the generaliza-
tion bound.

9) mDA utilizes a new deep neural network with an addi-
tional branch to compute a set of probabilities for each
sample that assigns it to multiple latent domains and
designs multidomain domain adaptation layers to handle
the domain shift.

All of these deep methods are implemented under the Caffe
framework [45], and fine-tuned from Caffe-trained models of
Alexnet which are pretrained on the ImageNet. We employ
the mini-batch stochastic gradient descent (SGD) to train the
deep networks and set the momentum to 0.9. The learning
rate of all convolutional and pooling layers is set to 0.0001,
as these layers are fine-tuned from the Alexnet model. We
set the learning rate of the domain classifier and the task-
specific classifier to 0.001 to train them from scratch. All of
the experiments are carried out on a single GeForce GTX Titan
X GPU. At the feature extraction time, all models run well in
1 s on this GPU.

B. Results

1) Comparison With Latent Domain Discovery Methods:
Table I reports the domain adaptation results of our method
and traditional methods of latent domain discovery for both
object classification and action-recognition tasks. We can make
the following observations.

1) Our method achieves the best performance for all
multiple source-domain adaptation methods on both
datasets, which explicitly demonstrates the effectiveness
of performing latent domain identification and feature
learning in a unified deep architecture.

2) For the methods of Latent, Reshape, and Ours, the final
result is further influenced by the performance of the
multiple source-domain adaptation method. For all of
the latent domain discovery methods, the methods of
DSM and DAM generally outperform those of M-GFK,
M-LRSR, M-TJM, and MDAN. One possible reason is
because DSM and DAM are able to adaptively trans-
fer the knowledge by automatically learning different
weights of different latent source domains while M-
GFK, M-LRSR, M-TJM, and MDAN equally treat each
latent domain during the transfer.

3) The LRE-SVMs method does not explicitly divide the
source data into multiple domains and cannot be applied
to the methods of multiple source-domain adaptation,
which performs worse than our method on all tasks.

4) In comparison with object classification, the accura-
cies on the action-recognition task are much lower for
all methods since the dynamic image representation
of videos in the target domain (UCF101 dataset) is
very different from the image from the source domain
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TABLE I
ACCURACIES (%) OF DIFFERENT METHODS OF DISCOVERING LATENT DOMAINS ON THE OBJECT DATASET AND THE ACTION DATASET

TABLE II
ACCURACIES (%) OF DIFFERENT METHODS OF DEEP DOMAIN ADAPTATION ON THE OBJECT DATASET AND THE ACTION DATASET

(Stanford40 dataset) which makes this task more chal-
lenging.

2) Comparison With Deep Domain Adaptation Methods:
Table II shows the accuracy comparison between a variety
of deep domain adaptation methods and our method on the
object and action datasets. From Table II, it is noticeable that
the recognition accuracies of the proposed method are higher
than those of other state-of-the-art methods on both object and
action datasets, which clearly verifies the benefit of exploiting
the multiple latent domains for domain adaptation by captur-
ing the intrinsic structure of source data. In other words, it is

beneficial to separate the source data into multiple domains to
further improve the recognition accuracy on the target domain.
Compared with the deep method of mDA [21], which is also
able to discover latent domains for domain adaptation, our
method still achieves a much better result probably due to the
employment of multiple source-domain adaptation to adap-
tively combine multiple source classifiers for classification on
the target domain.

3) Qualitative Analysis of the Discovered Latent Domains:
Fig. 4(a) shows exemplar images corresponding to differ-
ent discovered latent domains by different methods on the
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Fig. 4. Exemplar images from the identified latent domains by different methods of Latent (top row), Reshape (middle row), and Ours method (bottom row)
on both (a) object classification and (b) action recognition. (This figure is best viewed in color.)

object dataset. All of these images are of the same bike class.
Note that three identified domains generally correspond to
different semantic meanings. Domain I mainly corresponds

to a bunch of bikes, Domain II mainly corresponds to bicy-
cling, and Domain III mainly corresponds to a single bicycle.
Compared with the methods of Latent and Reshape, Ours
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Fig. 5. Results of different domain numbers on object classification and action recognition. (a) Object classification (CPB→I). (b) Object classification
(IPB→C). (c) Object classification (ICB→P). (d) Object classification (ICP→B). (e) Action recognition.

Fig. 6. Illustration of the convergence of our method. (a) Object classification (CPB→I). (b) Object classification (IPB→C). (c) Object classification
(ICB→P). (d) Object classification (ICP→B). (e) Action recognition.

method performs best since all exemplar images are classi-
fied into the correct domains. For the methods of Latent (top
row) and Reshape (middle row), several images (denoted by

red bounding boxes) are not correctly classified into their cor-
responding latent domains. Fig. 4(b) shows an example of the
horse-riding class in the action dataset. The identified Domains
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I–III correspond to the scenes of grassy lawn, wild desert, and
urban environment, respectively. It is interesting to observe
that our method can automatically assign almost all instances
to their correct latent domains.

4) Quantitative Evaluations on the Number of Latent
Domains: Additional experiments are conducted on the object
and action datasets to study how the group number affects the
domain adaptation performance. Fig. 5 illustrates the recogni-
tion accuracies of our method with respect to the increasing
number of latent domains. It is obvious that for both object
recognition and action recognition, the result first increases
and then declines with the increasing domain number. So the
optimal number of latent domains is empirically set to 3.

5) Convergence of the Iterative Algorithm: Fig. 6 exper-
imentally demonstrates the convergence of the proposed
iterative algorithm to jointly learn multiple latent domains
and deep representations for both object classification and
action recognition. It is evident that the learned deep features
converge after fewer than five iterations.

V. CONCLUSION

A novel deep neural-network-based approach has been
presented to discover multiple latent domains from source data
for domain adaptation. Different from previous methods, we
simultaneously address latent domain discovery and visual fea-
ture learning in a unified deep architecture which is learned
in an end-to-end fashion. A new iteration optimization algo-
rithm is presented to learn the deep model, which alternates
between applying a clustering method to predict the domain
labels and training the deep neural networks using the pre-
dicted domain label as a supervision. In the training stage,
a domain prediction loss, a task-specific classification loss,
and a domain confusion loss are effectively combined into the
objective function, which makes the learned feature domain
distinguishable, semantically meaningful, and domain transfer-
able. Extensive experiments on both object classification and
action recognition demonstrate the efficacy of the proposed
model against existing methods.
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