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Abstract—Automatically detecting anomalies in videos is a
challenging problem due to non-deterministic definitions of
abnormal events and lack of sufficient training data. To address
these issues, we propose an autoencoder coupled with attention
model to discover normal patterns in videos via adversarial
learning. Abnormal events are detected by diverging them from
the normal patterns with the reconstruction error produced by
the autoencoder. To this end, we build an end-to-end trainable ad-
versarial attention-based autoencoder network, called Ada-Net,
to make the reconstructed frames indistinguishable from original
frames. The Ada-Net combines an autoencoder network and a
GAN model that is used to benefit enhancing the reconstruction
ability of the autoencoder. To further improve the reconstruction
performance, we integrate an attention model into the decoder
to dynamically select informative parts of encoding features
for decoding. The attenion mechanism is helpful to preserving
important information for learning intrinsic normal patterns.
Evaluations on four challenging datasets, including the Subway,
the UCSD Pedestrian, the CUHK Avenue, and the ShanghaiTech
datasets, demonstrate the effectiveness of the proposed method.

Index Terms—Abnormal event detection, Ada-Net, attention
mechanism, generative adversarial network.

I. INTRODUCTION

In recent years, detecting abnormal events in videos has
attracted growing attentions from both academia and indus-
try [23], [2], [22], [57], [8]. It still remains a challenging
problem due to the low resolution, complex and crowded
scenes, unpredictability of individual appearance, and irregular
pedestrian motion trajectories in videos [41], [28], [5]. Some
early approaches detect abnormal events by classifying them
into specified event categories [65]. However, with the rapid
growth of surveillance videos, the categories of abnormal
events are usually non-deterministic. In addition, since the
abnormal events rarely happen in the real world, it is difficult
to collect sufficient data for training robust classifiers.

Many recent methods approach this problem by extracting
normal patterns from training videos and detecting abnor-
malies as events deviated from normal patterns [51], [61],
[17], [7]. Due to the outperformance of deep learning on
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various visual tasks [19], [63], [16], [4], a variety of deep
neural networks have been proposed for anomaly detection
in an unsupervised learning way [34], [28]. Hasan et al. [17]
proposed a fully convolutional autoencoder to learn the regular
dynamics in long videos. In their method, the network just pro-
cesses the frames into different channels, without effectively
modeling the temporal relationship between sequential frames.
Chong et al. [7] presented a spatiatemporal deep architecture
to learn the regular patterns. The network encodes the frames
into sptial feature representations with spatial convolution and
then learns the temporal evolution of the spatial features with
convolutional LSTM, and the Euclidean distance is used to
compute the reconstruction error between the input frames and
the reconstructed frames.

In this paper, we propose an attention-based autoencoder to
discover normal patterns via an adversarial learning strategy.
The adversarial learning is employed to make the recon-
structed frames indistinguishable from the original frames,
which improves the reconstruction performance. The attention
mechanism is leveraged to automatically select the important
information for effective decoding. Specifically, we build an
adversarial attention-based autoencoder network, called Ada-
Net, which is trained in an end-to-end manner without any
supervision in the training data. The Ada-Net consists of an
attention-based autoencoder network and a generative adver-
sarial network (GAN), as illustrated in Figure 1. Inspired by
the idea of the GAN, we introduce an adversarial loss as a
regularization to train the autoencoder for reconstructing the
frames. A discriminator is designed to distinguish the recon-
structed frames frome the original frames and the decoder
in the autoencoder is treated as a generator to generate the
reconstructed frames. In adversarial learning, the decoder is
trained to maximally confuse the discriminator so that the
discriminator loses the ability of classifying the original and
reconstructed frames.

To effectively reconstruct the frames at the pixel level,
the encoder in the autoencoder is constructed by spatial
convolutional layers to capture the spatial structure within
frames and by a stack of convolutional LSTMs [55] to explore
the temporal information between frames. Accordingly, the
decoder consists of a stack of attention-based convolutional
LSTMs and spatial de-convolutional layers. A local attention
model is integrated into the convolutional LSTMs in the
decoder to select more relevant parts of the feature maps for
decoding. Softly associated with the encoding feature maps
and the last decoded hidden state, the weights of all the
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feature map regions are dynamically calculated to represent
the importance of the corresponding regions to the decoding.

Extensive experiments on four challenging datasets
have demonstrated that our method can achieve best or
competitive results compared with state-of-the-art methods.
The contributions of this paper are summarized as follows:

• We propose an Adversarial Attention-based Autoencoder
to learn normal patterns for abnormal event detection in
an unsupervised way. To this end, a novel deep neural
network called Ada-Net is presented by combining an
attention-based autoencoder and a GAN model, which
can be trained in an end-to-end manner.

• In contrast to traditional measurements of the reconstruc-
tion error such as Euclidean distance, we introduce an
adversarial loss with respect to the frame discriminator
to make the reconstructed frames indistinguishable from
the original frames, which improves the reconstruction
accuracy of the autoencoder.

• To maintain the important information for learning in-
trinsic normal patterns, we propose an attention-based
convolutional LSTMs to softly select the more relevant
feature map regions for reconstructing the frames at the
pixel level.

II. RELATED WORK

Recently, many researchers have focused on the abnormal
event detection in surveillance videos [44], [42], [27], [40],
[33]. The traditional methods of abnormal event detection can
be roughly divided into supervised learning [65], [6], [64] and
unsupervised learning [66], [39], [10], [54], [3], [17], [36], [7].

A. Supervised learning based anomaly detection.

Some work [65], [6] treats the abnormal event detection
as a binary classification problem (normal and abnormal).
Zhou et al. [65] presented spatial-temporal Convolutional Neu-
ral Networks to capture the spatial and temporal information
by performing spatial-temporal convolutions. Zhao et al. [64]
used the spatio-temporal feature and non-negative locality-
constrained linear coding to generate high-level representa-
tions of videos for abnormal event detection. Sultani et
al. [47] held that the training data of normal and abnormal
events can help a detection system learn better. Thus, they
formulated a weakly-supervised learning approach and built
a new dataset containing abnormal training data from the
Internet. Different from these methods, our method focuses on
detecting abnormal events in an unsupervised way to overcome
the ambiguous definition of abnormal classes and the limited
number of training videos.

B. Unsupervised learning based anomaly detection

1) Traditional learning methods: In contrast to supervised
learning, many other methods train the detection models with
little or even no supervision. These methods usually resort
to learning normal motion patterns in videos and recognize
abnormal events by diverging them from the normal patterns.

In [66], [39], [10], [54], [3], the trajectories are extracted in ad-
vance for moving objects to represent the regular patterns. By
analyzing the motion patterns of normal trajectories, abnormal
events are identified as ones which do not match the normal
motion patterns. Cui et al. [10] tracked interest points and
proposed interaction energy potential to model the relationship
among a group people for exploring the normal/abnormal
patterns. Besides, the methods of sparse coding [49], [62], [9],
[32] are widely utilized in anomaly detection and represent the
regular patterns by a linear combination of basis with sparsity.

2) Deep learning methods: With the success of deep learn-
ing on image classification [24], [45], many researchers pay
attention to solving the abnormal detection problem with
deep networks by reconstructing videos [7], [13]. Hasan et
al. [17] presented an autoencoder to effectively learn the
regular dynamics in long-duration videos which is applied to
identify irregularity. Xu et al. [56] proposed an appearance and
motion deepNet to automatically learn feature representations,
and utilized one-class SVM to predict abnormal events. Medel
and Savakis [36] introduced a composite convolutional LSTM
network to predict the evolution of a video sequence and
detect anomalous video segments using a regularity evaluation
algorithm at the output of the LSTM. Chong and Tay [7]
used a spatio-temporal architecture for anomaly detection
that consists of two components, one is for spatial feature
representation, and the other is for learning the temporal
evolution. Wang et al. [52] proposed a self-adaptive strategy
to predict normal events and detected abnormal events by a
two-stage unsupervised method without any priorly knowing
of normal events. Jamadand et al. [21] proposed a video
prediction framework called PredGAN for abnormal event
detection. Ionescu et al. [20] adopted an unmasking technique
to the abnormal event detection task for detecting abnormal
events without training sequences. Different from these deep
networks, our Ada-Net introduces an attention mechanism into
the autoencoder to automatically select important informative
parts for reconstructing normal patterns in videos. Benefiting
from the good performance of the Generative Adversarial
Network (GAN), Liu et al. [31] introduced a U-Net encoder-
decoder with skip connections as the generator coupled with a
patch-based discriminator to predict future frames for anomaly
detection. Different from [31], our method applies attention
mechanism into the convolutional LSTMs as the generator of
GAN to learn normal patterns of events. The attention model is
able to automatically discover different importance of different
parts of normal patterns for effective decoding by learning
weights of different regions of different feature maps.

III. ADVERSARIAL ATTENTION-BASED AUTOENCODER
NETWORK

A. Overview
The Adversarial Attention-based Autoencoder Network

(Ada-Net) consists of two components: an attention-based
autoencoder network and a GAN model, as shown in Figure 1.
The decoder in the autoencoder is treated as a generator of the
GAN.

Our network encodes the normal patterns in videos with a
small reconstruction error. Given a sequence of video frames
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Fig. 1. The architecture of the adversarial attention-based autoencoder network (Ada-Net). The Ada-Net consists of an attention-based autoencoder and a
GAN model. The decoder in the autoencoder is treated as the generator in the GAN.

X = {x1, x2, · · · , xNt
} where Nt is the number of frames,

we first build the spatial convolutional layers to learn the
spatial structures within the frames. With the effectiveness
of LSTM in modeling the temporal relationships between
sequential frames, we introduce a stack of convolutional
LSTMs to encode the frames into their corresponding feature
maps M = {m1,m2, · · · ,mNt

} where mt represents the
feature maps of the input frames xt. In decoding, we design a
stack of attention-based convolutinal LSTMs to generate the
reconstructed feature maps of the input frames. We then apply
the de-convolutional spatial layers to produce the reconstructed
sequential frames X̂ = {x̂1, x̂2, · · · , x̂Nt

}. In the GAN, the
generator (i.e., the decoder) aims to reconstruct the video
sequences to confuse the discriminator, and the discriminator
tries to distinguish the original X and the reconstructed X̂ .

B. Network Architecture

1) Encoder: To reconstruct the sequential frames at the
pixel level, motivated by the traditional networks [24], [45],
[48], we build two spatial convolutional layers to model
the spatial structures within the input frames. The spatial
convolution operation tries to maintain the spatial relationships
between pixels by learning image features using small squares
of the input data. With the spatial convolutional layers, an input
frame can be effectively encoding into informative feature
maps. Then, a stack of convolutional LSTMs (ConvLSTM)
is employed to capture the temporal information between the
sequential frames.

Long Short-Term Memory (LSTM) [18] is capable of learn-
ing long-term dependencies on sequential data and has been
successfully applied to various visual tasks [30], [14], [29],
[25]. Different from the traditional LSTM, the ConvLSTM
replaces all the input-to-state and state-to-state with the con-
volution operations, which has been successfully utilized in
the task of video prediction [38]. In this way, the ConvLSTM
introduces fewer parameters and generates more descriptive
spatial feature maps. Accordingly, each cell in the ConvLSTM
can be computed as follows:

Ĉt = tanh(Wc � xt + Uc � ht−1 + bc),

it = σ(Wi � xt + Ui � ht−1 + bi),

ft = σ(Wf � xt + Uf � ht−1 + bf ),

ot = σ(Wo � xt + Uo � ht−1 + bo),

Ct = ft ∗ Ct−1 + it ∗ Ĉt,
ht = ot ∗ tanh(Ct),

(1)

where it, ft and ot are the input, forget and output gates at
the time-step t, respectively. Ct is the cell memory and ht
corresponds to its hidden state. � stands for the convolution
operation. Wc,Wi,Wf ,Wo, Uc, Ui, Uf , Uo are the weight
metrics, and bc, bi, bf , bo are the bias of ConvLSTM. xt is
the input and ∗ represents the element-wise multiplication.

2) Attention-based Decoder: In the decoding phase, we
propose an attention-based convolutional LSTM to decode
the feature maps generated by the encoder. Let M =
{m1,m2, · · · ,mN} be the encoding feature maps of input
frame sequences and fd be the decoding function of the
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attention-based LSTM. The hidden state hdt of the decoder
at time t can be computed by

hdt = fd(hdt−1,m
a
t ). (2)

Here hdt−1 stands for the previously decoding hidden state of
the frame t− 1 and ma

t represents the attention-based feature
maps of the input frame t with the size of K ×K ×D where
D is the number of filters.

We introduce attention maps to automatically select the
most informative regions for decoding, since the attention
maps are able to represent the contributions of all the fields
in the feature maps. To achieve this goal, a soft attention
mechanism is leveraged to automatically compute the weights
of different regions in the feature maps. The calculation
of weights is determined by the encoding feature maps as
well as the last decoding hidden state, characterized by a
corresponding indicator ut:

ut =WT
u � f(Wd � hdt−1 +We �mt + ba), (3)

where Wu, Wd, and We are the model parameters and ba is
the bias weight. f is an activation function. The value f(Wd�
hdt−1 +We �mt + ba) reflects the matching degree of hdt−1

and mt. Wu is used to convert the matching degree to the
“spatial attention distribution” ut in the feature map mt. Let
αt represent the final attention maps on the feature maps of
the input frame t, which are normalized by

αijkt =
exp(uijkt )∑
l exp(u

ijl
t )

. (4)

The attention value αijkt indicates the weight of the region
(i, j, k) in the feature maps where i and j respectively rep-
resent the horizontal and vertical positions of the attention
map, and k indicates the position of the filters. From Eq.
(4), we calculate the attention value αijk to represent the
important weight at the position (i, j) across the k-th filters.
Specifically, at the k-th filter, if αijk is larger, it means that the
location (i, j) of the encoding feature map is more important
for the decoder; otherwise, it means that the location (i, j) of
the encoding feature map is less important. Accordingly, the
attention-based feature maps of the input frame t can be given
by

ma
t = αt ∗mt. (5)

The attention maps αt indicate the importance of the
encoding feature maps in decoding the next state hdt . With
the attention mechanism in the decoder, the encoder does
not need to encode all the information in the input sequence
of frames, and the attention model can help dynamically
select the informative region of encoding feature maps in the
decoder. Then we append two spatial de-convolutional layers
to generate the reconstructed frames.

3) Generative Adversarial Network: Generative Adversar-
ial Network (GAN) [15] has been used in several domains
such as Natural Language Processing [26], [59] and Image
Reconstruction [60], [58], which has demonstrated its effec-
tiveness on guiding the reconstructions. The GAN framework
consists of two competing neural networks: a generative model
G and a discriminative model D. G and D compete with each

other in a two-player min-max game. The generator G aims
to produce realistic samples to confuse the discriminator D
while the discriminator D tries to distinguish the generated
samples from real data correctly. More formally, G and D
can be trained jointly via solving

min
G

max
D

[Ex[logD(x)] + Ez[log(1−D(G(z)))], (6)

where x is the true data sample, z is the input of the generator
G, and E is the empirical estimate of the expected value of
the probability.

In our GAN model, the generator generates the reconstruct-
ed frames which are similar to the original frames while the
discriminator tries to differentiate them correctly. Compared
with traditional methods of measuring the reconstruction er-
rors, our method of adversarial learning between a generator
and a discriminator is beneficial to further improving the
reconstruction accuracy.

Particularly, the generator of our network is constructed by
the decoder in the autoencoder, and the discriminator consists
of a stack of ConvLSTMs with one fully-connected layer.
Each ConvLSTM contains two layers with 32 filters, and
the kernel size is 28 × 28 with the stride of 3. The input
to the discriminator is the original sequential frames or the
reconstructed sequential frames. The output is a binary output,
i.e., original or reconstructed.

To train the GAN, the adversarial loss Ladv is defined as

Ladv = EX [log(Dθa(X))] + EM [log(1−Dθa(Gθd(M)))],
(7)

where Dθa(·) denotes the discriminator in the GAN with the
parameter θa. Gθd(·) denotes the generator (i.e., the decoder in
the autoencoder) with the parameter θd. X represents the input
video with the sequential frames x1, x2, ..., xNt . M represents
the feature maps of X by the encoder.

C. Learning

In order to train the autoencoder, a reconstruction loss is
introduced which is based on the Euclidean distance of the
input sequences of frames and the reconstructed sequences of
frames from the output of the decoder, formulated as

Lrec =
1

2N

∑
i

||Xi − X̂i||22 + γ(||θe||22 + ||θd||22), (8)

where Xi and X̂i indicate the i-th input sequence of frames
(i.e., i-th input video) and the corresponding reconstructed se-
quence of frames, respectively. N is the size of the mini batch.
Suppose Fθe(·) represents the encoder in the autoencoder with
the parameter θe, then Mi = Fθe(Xi) represents the output
feature maps of the input Xi. By the decoder Gθd(·), the
reconstructed sequence of frames is given by X̂i = Gθd(Mi).
The regularization terms of ||θe||22 and ||θd||22 are introduced
to prevent the parameter learning from overfitting. γ is a
hyper-parameter to balance the reconstruction error and the
regularization.

We train θe and θd using the reconstruction loss Lrec, and
update θd as well as θa using the adversarial loss Ladv . An
iterative learning algorithm is designed to jointly optimize θe,



1520-9210 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2019.2950530, IEEE
Transactions on Multimedia

5

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Input Video

Reconstructed Video

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

10.63 11.27 12.97 12.47 12.71 12.31 10.56 10.48

Abnormal Event No Payment

Ada-Net

Error:

Fig. 2. A video is reconstructed with the proposed Ada-Net. The frames
with high reconstruction errors will be detected as the abnormal event.

θd and θa:
1. Update θe by minimizing Lrec;
2. Update θd by minimizing (Lrec + Ladv);
3. Update θa by maximizing Ladv .
The training procedure of the Ada-Net is summarized in
Algorithm 1.

Algorithm 1 The training procedure of the Ada-Net.
Input: The training sequences of frames {X1, X2, · · · , XN}

where N is the size of the mini-batch;
Output: The parameters {θe, θd, θa} of the Ada-Net.
1: Initialize the parameters {θe, θd, θa}.
2: for iteration number do
3: Encode {X1, X2, · · · , XN} to {M1,M2, · · · ,MN}

using the encoder.
4: Decode {M1,M2, · · · ,MN} to {X̂1, X̂2, · · · , X̂N}

by the attention-based decoder.
5: Update the parameters {θe, θd, θa}:
6: θe ← -∇(Lrec).
7: θd ← -∇(Lrec + Ladv).
8: θa ← +∇(Ladv).
9: end for

D. Anomaly Score

In the detection procedure as shown in Figure 2, with one
forward pass, the reconstruction error et of all the pixel values
in frame t is computed by the Euclidean distance between the
input frame and the reconstructed frame. Then the calculated
Euclidean distances of all the frames are normalized to the
range of [0,1). Finally, the anomaly score st of the frame t
can be given by

st =
et −mint et
maxt et

. (9)

IV. EXPERIMENTS

A. Datasets

We evaluate our method on four challenging benchmarks:
the Subway [2], the UCSD [35], the Avenue [32], and the
ShanghaiTech [34] datasets. All the training videos in the
experiments are normal events.

The Subway dataset contains two scenarios: the entrance
(1 hour 36 minutes with 144249 frames) and exit (43 minutes
with 64900 frames). The abnormal events include walking in
the wrong direction, no payment, loitering, irregular interac-
tions between people, and miscellaneous. The first 15 minutes
of both the entrance and exit videos are used for training and
the rest of videos are used for testing.

The UCSD dataset consists of two sub-datasets: Ped1 and
Ped2, which record the pedestrian walkways. The Ped1 dataset
contains 34 and 36 video clips in the training and testing
sets, respectively. Each video clip consists of 200 frames
with the size of 158× 238. The Ped2 dataset has 16 training
and 12 testing video clips with different numbers of frames.
Anomalies of these two datasets can be summarized as: carts,
cars, the person skating or bicycling among pedestrians.

The Avenue dataset has 16 training and 21 testing video
clips with 35240 frames, totally. Each video clip lasts about
2 minutes long. The anomalies include running, walking in
opposite direction, throwing objects and loitering.

The ShanghaiTech dataset contains 13 scenes with complex
light conditions and various viewpoints. This dataset has 130
abnormal event and over 270, 000 training frames.

Figure 3 shows several examples of the abnormal events of
these four datasets.

B. Evaluation Metric

We apply the ROC (Receiver Operating Characteristic)
curve and the corresponding AUC (Area Under Curve) as the
evaluation metrics, which are commonly used in the abnormal
event detection task. Moreover, the EER (Equal Error Rate) is
introduced to evaluate the equal probability of miss-classifying
a positive or negative sample in ROC curve. In this paper,
all the evaluations are based on the frame level, where we
compute the anomaly scores of frames.

C. Implementation

In the encoder of our Ada-Net, we use two spatial convolu-
tion layers. The number of filters are 128 and 64, respectively.
The kernel size of the first layer is 11×11 with the stride of 4.
The kernel size of the second layer is 5× 5 with the stride of
2. The ConvLSTM contains two layers with 32 filters, and the
kernel size is 28×28 with the stride of 3. The decoder has the
same parameter settings of the encoder. In the attention layer,
the kernel size of Wu, Wd and We are set to 1×1, containing
32 filters.

In the training process, we initialize the parameters of the
autoencoder with the parameters of a pre-trained recurrent
autoencoder model trained on feature sequences from original
sequential frames. In the reconstruction process by using the
autoencoder, it is shown in [46] that a decoder LSTM which
attempts to reconstruct the reverse sequence is easier to train.
So we reconstruct the video sequence in the reverse order
with the attention-based decoder LSTM. Note that we have
the similar order of the sequential frames in calculating the
reconstruction errors. To effectively train the discriminator, we
append a prior uniform distribution to the input to regularize
the learning of the discriminator. The Ada-Net is trained with
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Fig. 3. The typical examples of the abnormal events from the Avenue, Subway, ShanghaiTech and UCSD datasets.

TABLE I
ABNORMAL EVENT DETECTION RESULTS IN TERMS OF FRAME-LEVEL

AUC AND EER ON THE AVENUE DATASET.

Method AUC EER
Del Giorno et. al [11] 78.3% -

Tudor et. all [50] 80.6% -
Lu et. al [32] 80.9% -

Chong et. al [7] 80.3% 20.7%
Hasan et. al [17] 70.2% 25.1%

Ionescu et. al [20] 80.6% -
Luo et. al [34] 81.7% -
Liu et. al [31] 84.9% -

Wang et. al [52] 85.3% 23.9%
Ours (Ada-Net) 89.2% 17.6%

adam optimizer with default parameters, and the Ada-Net
network is implemented using the TensorFlow toolkit [1].

D. Quantitative Analysis

1) Results on the Avenue Dataset: Table I shows the
quantitative comparison of our approach with several state-
of-the-art methods on the Avenue dataset in terms of Area
Under the Curve (AUC) and Equal Error Rate (EER). The
performances of the compared methods are taken from the
original papers. Although there are many works about detect-
ing anomalies, some of them do not evaluate on the Avenue
dataset [37], [56], and several other methods do not report the
result of EER [32], [11]. Compared with the deep network
based methods [17], [7], [34], [31], [52], our Ada-Net at least
gains an improvement of 3.9% on the AUC evaluation and an
improvement of 3.1% on the EER evaluation, which clearly
validates the effectiveness of the proposed Ada-Net.

2) Results on the Subway Dataset: Table II provides the
comparison results between our method and several state-of-
the-art methods on the Subway dataset in terms of frame-level
AUC and EER. Compared with [53], [37], we obtain better
AUC results on both the entrance and exit sub-datasets, which
indicates that our deep network can find more informative
normal patterns than the traditional methods which are based
on the hand-crafted features. Compared with the method [17],
our method achieves comparable results on the entrance
videos. But on the exit videos, our method yields much
better results than [17] on the exit videos, which demonstrates
the good stability of our method in different scenarios. For
the evaluation of EER on the entrance videos, our approach

TABLE II
ABNORMAL EVENT DETECTION RESULTS IN TERMS OF FRAME-LEVEL

AUC AND EER ON THE SUBWAY DATASET.

Method Subway (Entrance) Subway (Exit)
AUC EER AUC EER

Mehran et. al [37] 67.5% 31.0% 55.6% 42.0%
Wang et. al [53] 81.6% 22.8% 84.9% 17.8%

Xu et. al [56] - - 87.9% 6.8%
Hasan et. al [17] 94.3% 26.0% 80.7% 9.9%

Ionescu et. al [20] 70.6% - 85.7% -
Wang et. al [52] - - 84.5% 21.4%
Chong et. al [7] 84.7% 23.7% 94.0% 9.5%
Ours (Ada-Net) 90.2% 22.67% 94.6% 9.3%

outperforms all the compared methods. This verifies that our
method can perform more precise detection of the abnormal
events. For the exit gate videos, our Ada-Net achieves the best
result on the AUC evaluation. Compared with [56], our method
has higher EER. The possible reason is that [56] employs
the one-class SVM after feature learning by the autoencoder,
which further improves the precision of detection especially
on the more complex exit gate videos.

3) Results on the UCSD Dataset: We also report the results
on the UCSD Ped1 and Ped2 datasets in Table III. Our
method is better than most of the compared methods, which
clearly demonstrates the effectiveness of combining attention
mechanism and adversarial learning strategy for reconstruc-
tion. The methods of [56] and [52] works better than our
method, probably due to that [56] and [52] both use the
background subtraction technology to extract the local regions
for anomaly detection which can improve the performance,
but our method does not require any preprocessing techniques
such as background subtraction or region detections. To further
reduce the EER values, we follow the operation in [43],
dividing the video frames in the UCSD dataset into 4×4 = 16
patches of the same size. Then we appropriately reduce the
size of filters in the Ada-Net to train the model and identify
abnormal events. The results of our method with 16 patches
are shown in Table III. Without the complex background
subtraction technology, we achieved the comparable result by
simply dividing each frame into patches.

4) Results on the ShanghaiTech Dataset: We also evalu-
ate our method on the ShanghaiTech dataset, as shown in
Table IV. The ShanghaiTech dataset is a newly proposed
dataset, which contains many pedestrians in a scene. Com-
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TABLE III
ABNORMAL EVENT DETECTION RESULTS IN TERMS OF FRAME-LEVEL

AUC AND EER ON THE UCSD DATASET.

Method UCSD (Ped1) UCSD (Ped2)
AUC EER AUC EER

Adam et. al [2] 77.1% 38.0% - 42.0%
Kim et. al [23] 59.0% - 69.3% -

Mehran et. al [37] 67.5% 31.0% 55.6% 42.0%
Mahadevan et. al [35] 74.2% 32.0% 61.3% 36.0%

Wang et. al [53] 72.7% 33.1% 87.5% 20.0%
Xu et. al [56] 92.1% 16% 90.8% 17%

Hasan et. al [17] 81.0% 27.9% 90.0% 21.7%
Ionescu et. al [20] 68.4% - 82.2% -

Chong et. al [7] 89.9% 12.5% 87.4% 12.0%
Liu et. al [31] 83.1% - 95.4% -

Wang et. al [52] 77.8% 29.2% 96.4% 8.9%
Ours (Ada-Net) 90.4% 15.8% 90.3% 15.5%

Ours (with 16 patches) 90.5% 11.9% 90.7% 11.5%

TABLE IV
ABNORMAL EVENT DETECTION RESULTS IN TERMS OF FRAME-LEVEL

AUC ON THE SHANGHAITECH DATASET.

Method AUC EER
Hasan et. al [17] 60.85% -
Luo et. al [34] 68.00% -
Ours (Ada-Net) 70.00% 36.5%

pared with [17], [34], our method performs best with the grains
of 5.8% and 1.9%, respectively, on the AUC evaluation.

5) Impacts of different components in Ada-Net: We also
compare the contributions of different components in our Ada-
Net, and the results are shown in Table V. “w/o GAN”,
“w/o attention” and “w/o attention & GAN” represent the
method of removing the discriminator, the method of decoding
without attention mechanism, and the method of reconstructing
the frames without the attention-mechanism and the dis-
criminator, respectively. It is interesting to observe that: (1)
When discarding the discriminator, our method drops about
5%, which demonstrates the benefit of the GAN model in
training autoencoder by using the adversarial learning, and (2)
The performance is significantly improved by integrating the
attention mechanism into the decoder, since the attenon model
is capable of selecting the important and informative parts of
the input feature maps for decoding.

6) Event Count: Following the settings in [17], to reduce
the noise in the regularity score, we assume that the local
minima within 50 frames belongs to the same abnormal event.
The length of the abnormal event is reasonable because the
anomaly should last at least about 2-3 seconds long to be
meaningful.

Table VI shows the number of detected anomalies and false
alarm on the three datasets. For both the Ped1 and Ped2
of the UCSD dataset, we achieved better results than [36],
[17]. When the Ada-Net detects the same number of abnormal
events, it produces less false alarms. For the Avenue dataset,
the Ada-Net can detect the abnormal event more precisely,
despite it generates more false alarms. For the subway dataset,
we achieve better performance than other methods. The result
demonstrates that the Ada-Net can determine the temporal
region of the anomalies more accurately, which makes it more

practical in real scenes.

E. Qualitative Results

Figure 4 shows several examples of the detected abnormal
events using the Ada-Net on the Subway Entrance and Exit
gate dataset, and the Avenue dataset. The qualitative results
demonstrate that our method can effectively detect anomalies
in the crowded scenes. The detected abnormal events are
“no payment”, “wrong direction”, “running” on the Subway
Entrance gate video, “clean the wall” on the Subway Exit gate
video, and “opposite direction”, “throwing bag” on the Avenue
dataset.

F. Visualizing Attention Maps

Figure 5, Figure 6, and Figure 7 show some of the learned
filter responses of our model on the Avenue dataset, Subway
(Entrance) dataset, and the UCSD (Ped1) dataset, respectively.

Figure 5(a) shows one gray image with an abnormal event:
throwing a bag. Figure 5(b) visualizes two filter responses
of the encoding feature maps mt. Figure 5(c) visualizes two
corresponding filter responses of the attention maps α. These
two filters in the attention maps show opposite responses to
the abnormal object-the bag in the human’s hand. We can see
that the response of the first filter is high (red color) while
that of the second filter is low (blue color). The first filter
of α acts on the corresponding filter of mt, which can be
described as the filter that focuses on the encoding feature map
at the corresponding filter position of the abnormal object. The
second filter works on other regions, ignoring the encoding
feature map at the corresponding filter position of the abnormal
object. All other activated filters show similar characteristics.

Similarly, the filters of the attention maps in Figure 6(c)
focus on the abnormal object (the loitering people), and those
in Figure 7(c) focus on the abnormal car in the pedestrian strip
mostly.

(a) Input Image (b) Responses of Encoding Feature Maps

(c) Responses of Attention Feature Maps

Fig. 5. Filter responses of the encoding featurmaps and attention feature
maps trained on the Avenue dataset.
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TABLE V
THE AUC RESULTS OF DIFFERENT COMPONENTS OF THE ADA-NET ON THE FOUR PUBLIC DATASETS.

Method Avenue Entrance Exit Ped1 Ped2 ShanghaiTech
AUC EER AUC EER AUC EER AUC EER AUC EER AUC EER

w/o GAN 85.3% 21.1% 81.7% 23.5% 93.0% 11.2% 88.9% 18.2% 89.7% 17.8% 68.4% 38.3%
w/o attention 82.4% 22.1% 82.1% 25.2% 92.9% 12.9% 87.7% 20.3% 87.4% 19.6% 64.8% 39.4%

w/o attention & GAN 81.2% 23.1% 80.7% 27.8% 91.7% 13.5% 87.1% 20.8% 85.6% 21.7% 62.5% 41.9%
Ours (Ada-Net) 89.2% 17.6% 90.2% 22.67% 94.6% 9.3% 90.4% 15.8% 90.3% 15.5% 70.0% 36.5%

TABLE VI
THE NUMBER OF DETECTED ABNORMAL EVENTS AND FALSE ALARM ON THE THREE PUBLIC DATASETS. GT STANDS FOR GROUDTRUTH VALUES OF

EVENT COUNT.

Method True Positives/ False Alarm
UCSD Ped1 UCSD Ped2 Subway Entrance Subway Exit Avenue

GT:40 GT:12 GT:66 GT:19 GT:47
Lu et. al [32] - - 57/4 19/2 -

Kim et. al [23] - - 56/3 18/0 -
Dutta et. al [12] - - 60/5 19/2 -
Zhao et. al [62] - - 60/5 19/2 -
Medel et. al [36] 40/7 12/1 62/14 19/37 40/2
Hasan et. al [17] 38/6 12/1 61/15 17/5 45/4
Chong et. al [7] - - 61/9 18/10 44/12
Ours(Ada-Net) 40/6 12/1 62/9 19/9 45/10

No payment 

Wrong direction 

Running 

Normal activities 

No payment 

Wrong direction 

No payment 

No payment 

(a) Subway Entrance Dataset

Clean the wall 

Clean the wall Clean the wall 

Normal activities 

(b) Subway Exit Dataset

Opposite direction 

Normal activities 

Throwing bag 

(c) Avenue Dataset

Fig. 4. The qualitative results of our Ada-Net on the Subway Entrance dataset and Avenue dataset. We list the computed anomaly scores of a portion
of frames in the test video. The positive true abnormal events are “no payment”, “wrong direction”, “running”, “clean the wall”, “opposite direction”, and
“throwing bag”.
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(a) Input Image (b) Responses of Encoding Feature Maps

(c) Responses of Attention Feature Maps

Fig. 6. Filter responses of the encoding featurmaps and attention feature
maps trained on the Subway (Entrance) dataset.

(a) Input Image (b) Responses of Encoding Feature Maps

(c) Responses of Attention Feature Maps

Fig. 7. Filter responses of the encoding featurmaps and attention feature
maps trained on the UCSD (Ped1) dataset.

V. CONCLUSION

In this work, we have presented an adversarial attention-
based autoencoder (Ada-Net) that can discover normal patterns
and detect abnormal events in videos. The adversarial learning
strategy is used to replace the traditional reconstruction errors
to enhance the reconstruction ability of the Ada-Net, and
the attention mechanism helps the decoder reconstruct the
original frames with more informative encoding feature maps,
which can preserve important information for learning intrinsic
normal patterns. Extensive experiments on four public datasets
can validate the effectiveness of our method. In our future
work, we will pay attention to both the temporal and spatial
dimensions to increase the reconstruction accuracy.
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