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Exploiting Images for Video Recognition:
Heterogeneous Feature Augmentation via

Symmetric Adversarial Learning
Feiwu Yu, Xinxiao Wu , Member, IEEE, Jialu Chen, and Lixin Duan

Abstract— Training deep models of video recognition usually
requires sufficient labeled videos in order to achieve good per-
formance without over-fitting. However, it is quite labor-intensive
and time-consuming to collect and annotate a large amount of
videos. Moreover, training deep neural networks on large-scale
video datasets always demands huge computational resources
which further hold back many researchers and practitioners.
To resolve that, collecting and training on annotated images
are much easier. However, thoughtlessly applying images to
help recognize videos may result in noticeable performance
degeneration due to the well-known domain shift and feature
heterogeneity. This proposes a novel symmetric adversarial
learning approach for heterogeneous image-to-video adaptation,
which augments deep image and video features by learning
domain-invariant representations of source images and target
videos. Primarily focusing on an unsupervised scenario where
the labeled source images are accompanied by unlabeled target
videos in the training phrase, we present a data-driven approach
to respectively learn the augmented features of images and videos
with superior transformability and distinguishability. Starting
with learning a common feature space (called image-frame
feature space) between images and video frames, we then build
new symmetric generative adversarial networks (Sym-GANs)
where one GAN maps image-frame features to video features
and the other maps video features to image-frame features.
Using the Sym-GANs, the source image feature is augmented
with the generated video-specific representation to capture the
motion dynamics while the target video feature is augmented with
the image-specific representation to take the static appearance
information. Finally, the augmented features from the source
domain are fed into a network with fully connected layers for
classification. Thanks to an end-to-end training procedure of
the Sym-GANs and the classification network, our approach
achieves better results than other state-of-the-arts, which is
clearly validated by experiments on two video datasets, i.e., the
UCF101 and HMDB51 datasets.

Index Terms— Heterogeneous domain adaptation, feature aug-
mentation, symmetric GANs, image-to-video adaptation.
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I. INTRODUCTION

V IDEO recognition is an active research topic in com-
puter vision due to its wide applications such as video

retrieval, intelligent video surveillance and smart robots sys-
tem. Thanks to the great success of deep neural networks,
the performance of classifying videos has been dramatically
improved. However, training deep video classifiers requires
collecting and labeling large amounts of videos to overcome
over-fitting, which is particularly labor-intensive and time-
consuming. Furthermore, training deep neural networks on
such large-scale dataset usually consumes substantial compu-
tational and storable resources. Fortunately, it is much easier to
collect and annotate images, and there are also many existing
labeled image datasets that can be leveraged. In addition,
images often highlight the discriminative static information
within videos, such as the scenes, object appearances and
human postures, which have complementary characteristics to
videos. Therefore, it would be beneficial a lot to utilize images
to train deep models for video recognition with much less
computational cost.

However, directly applying the images trained classifier
to videos might lead to the domain shift problem, where
the variations in data distribution between source images
and target videos will significantly degrade the classification
performance at test time. To solve this problem, several recent
methods [1]–[3] use images and video frames to train shared
CNNs to learn the common feature between image and video
domains. Li et al. [1] exploited class-discriminative spatial
attention maps for transferring images to videos to make video
classifiers trained on images suffer less from the domain shift.
In these methods, each video is represented by a bag of images
and the underlying temporal relationship between sequential
frames may be lost during the knowledge transfer.

Different from the previous works aforementioned, we pri-
marily focus on the heterogeneous domain adaptation from
image to video, where the video is represented by spatiotem-
poral feature which totally differs from the image feature
in both feature dimension and physical meaning. Inspired
by recent advances of generative adversarial learning [4],
we propose a novel symmetric generative adversarial learn-
ing approach to transfer knowledge from image to video
by learning domain-invariant feature representation between
them. Our method is under the unsupervised scenario where
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all the source images are labeled while all the target videos are
unlabeled. Two generative adversarial networks (GANs) with
symmetric architectures, called Sym-GANs, are built to learn
the bidirectional mappings between source image feature and
target video feature. Then the image feature from the source
domain is augmented with the video-specific feature generated
by the image-to-video mapping and the video feature from the
target domain is augmented with the image-specific feature
generated by the video-to-image mapping. The new augmented
features of source images or target videos can be treated
as domain-invariant features with superior transferability and
representability by capturing both spatial appearance and tem-
poral motion information.

Since there is no correspondence between source images
and target videos, the video frames and their corresponding
videos are utilized to train the Sym-GANs model. Due to
the data distribution discrepancy between source images and
video frames, we adopt the JAN model [5] to learn a common
feature space between them, called image-frame feature space.
Accordingly, the bidirectional mappings between image and
video features are actually the ones between image-frame and
video features. Thus, the image-specific part of the augmented
feature is represented by the image-frame feature.

Finally, we design a classification network with fully con-
nected layers which takes the augmented features as input
and outputs the class label. A joint training method is pre-
sented to simultaneously learn the Sym-GANs model and the
classification network to enhance the discriminative ability
of the augmented feature. Three losses, i.e., the adversar-
ial loss, the Correlation Alignment (CORAL) loss, and the
cross-entropy loss, are effectively combined for training. The
adversarial loss matches the distribution of generated features
to the data distribution in the original domain. The CORAL
loss minimizes the difference between the synthesized fea-
tures and the original features in second-order statistics. The
cross-entropy loss is responsible for the classification.

Overall, the main contributions are:
• We propose a novel symmetric generative adversarial

learning approach to learn domain-invariant augmented
feature with excellent transferability and distinguisha-
bility for heterogeneous image-to-video adaptation. It is
worth emphasizing that the augmented feature preserves
both static appearance and temporal motion information
with superior descriptive ability which can be learned
without any paired image-video training data in an unsu-
pervised scenario.

• We build two generative adversarial networks with sym-
metric architecture (Sym-GANs) to learn the bidirectional
mappings between heterogeneous two domains, and for-
mulate the training of Sym-GANs and classification net-
work in a joint learning manner to further enhance the
discriminative ability of the augmented feature.

• Promising results on both the UCF101 and
HMDB51 video datasets clearly evaluate the effectiveness
of our method in leveraging images for video recognition.

The organization of the rest of this paper is given as follows.
In Section II, we summarize the related works of learning from
images to videos, domain adaptation and generative adversarial

network. Section III describes the proposed method for het-
erogeneous adaptation from source images to target videos,
including problem formulation, network architecture, learning
and prediction. Section IV elaborates on the experimental
result and analysis. The conclusion is made in Section V.

II. RELATED WORK

A. Learning from Images to Videos

To leverage the information from large-scale images with
annotations, several approaches have been proposed to take
images as auxiliary domain for video recognition [6]–[8].
Yang et al. [6] presented a cross-media video tagging scheme
to transfer tag knowledge from images to videos by explor-
ing the intrinsic data structures of both images and videos.
Duan et al. [7] leveraged a large number of loosely labeled
images from different Web sources for recognizing events in
videos, via proposing a multiple source domain adaptation
method.

Recently, there have been some attempts based on
deep learning to handle the image-to-video transfer
problem [1]–[3], [9], [10]. Ma et al. [2] first collected a
large scale image dataset from the Web, and then combined
these Web images and frames of videos to train deep
Convolutional Neural Network (CNN) for action recognition.
Sun et al. [9] explored tagged images for temporal action
localization in videos. They used pre-trained CNN for
cross-domain transfer between video frames and Web images.
Gan et al. [10] exploited both images and videos from the
Web and proposed a mutually voting approach to select
relevant images and video frames for effective transferring
between images and video frames. Li et al. [1] proposed a
method of adapting a CNN trained on Web images to videos
with attention mechanism. It uses class-discriminative spatial
attention maps to alleviate the domain shift problem. In all
these methods, the shared CNN between image and video
is trained using both images and video frames to learn the
common deep features of both images and videos. In contrast,
our method investigates on the heterogeneous image-to-video
adaptation where the video is represented by spatial-temporal
feature to capture the motion information that totally differs
from the image representation.

B. Domain Adaptation

As a well-studied machine learning strategy, domain
adaptation has gained increasing attention in various
visual tasks [11]–[17]. How to learn domain-invariant trans-
ferable feature representation between different domains
remains an important issue in domain adaptation. Earlier
approaches [13], [14], [18], [19] resort to first estimating the
weights of the source domain data and then training classi-
fiers on the reweighted data with transferability. Some other
approaches [20]–[22] learn domain-invariant feature represen-
tation by mapping function that aligns the source distribution
to the target domain. In the literature, a few studies focus
on heterogeneous domain adaptation where the source data
and target data are represented by different types of feature
representations. In [23]–[26], good common feature spaces are
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learned for connecting the heterogeneous source and target
domains. In [27], an asymmetric feature transformation is
proposed for knowledge transferring between source and target
domains.

Deep neural networks have been widely exploited to
learn more transferable features via integrating domain
adaptation into the pipeline of deep learning [5], [28]–[32].
Tzeng et al. [29] introduced an adaptation layer into a tradi-
tional CNN architecture and designed a domain confusion loss
to reduce the data bias between source and target domains.
In [30], a deep adaptation network is proposed for reducing
the domain discrepancy in higher task-specific layers using an
optimal multi-kernel selection method for mean embedding
matching. Later in [31] they extended the deep adaptation
network to a residual module. To handle the domain shift
in the joint distributions of input features and output labels,
Long et al. [5] presented joint adaptation networks to align
the joint distributions of multiple domain-specific layers using
a Mean Maximum Distance criterion. Sun and Saenko [33]
extended the CORAL [34] to a nonlinear transformation and
used it for aligning correlations of layer activations in deep
neural networks to reduce the domain shift. All these methods
assume that the data from the source and target domains are
represented by the same type of feature. In this paper, our deep
neural networks deal with the heterogeneous domain adapta-
tion, in which the feature representations of source and target
data are totally different. Recently, few deep models have been
proposed for heterogeneous adaptation. Chen et al. [35] pro-
posed Transfer Neural Trees (TNT) as a novel Neural Network
based architecture for semi-supervised heterogeneous domain
adaptation. Different from TNT which requires the labeled
target data for training, our method handles the heterogeneous
domain adaptation in an unsupervised fashion without any
supervision in the target domain.

C. Generative Adversarial Network

Inspired by the adversarial learning strategy, Genera-
tive Adversarial Networks (GANs) have achieved impres-
sive progress in domain adaptation where an adversarial
loss with respect to domain labels has become a popular
solution to reduce the domain discrepancy [32], [36]–[40].
Ganin and Lempitsky [32], Ganin et al. [38] proposed domain
adversarial neural networks to learn domain invariant fea-
tures by an adversarial learning strategy between the feature
extractor and the domain classifier. Tzeng et al. [36] first
pre-trained a source CNN using labeled source data and then
learned a target CNN to make a discriminator not correctly
and reliably classify the encoded source and target samples
into domains. Reference [39] proposes importance weighted
adversarial networks, in which a weighting scheme is pre-
sented for detecting the samples from the outlier classes in
the source domain to effectively reduce the domain shift.
In [40], an adversarial image generation approach is presented
to directly learn a joint feature space where the distance
between source and target distributions are minimized. All
these feature-level adversarial adaptation methods focus on
modifications to the embedding discriminative feature space

of homogeneous domains. Different from them, our method
employs the adversarial learning to the heterogeneous domain
adaptation. It learns bidirectional mappings between two
domains by symmetric GANs to generate augmented features
with powerful transferability for domain adaptation.

With the good performance of adversarial training in
generative models, there has been a rich line of recent
work to apply adversarial loss on pixel-level for domain
adaptation [12], [41]–[45]. In [41], a GAN-based approach is
presented to transform an image from one domain to the
other in the pixel level using a task-specific loss and a new
content-similarity loss. Taigman et al. [42] learned a domain
transfer network for transferring a sample in one domain
to analog sample in another domain via the combination
of a multiclass GAN loss, an f-constancy component and a
regularizing component. Liu and Tuzel [43] proposed coupled
generative adversarial networks to learn a joint distribution
of multi-domain images without any tuples of corresponding
images and successfully applied it to unsupervised domain
adaptation. Zhu et al. [44] combined an adversarial losses
with a cycle consistency loss for learning to translate an
image from source domain to target domain in the absence of
paired samples. Russo et al. [45] introduced a bi-directional
adaptive adversarial domain adaptation architecture that maps
simultaneously source samples into the target domain and vice
versa with the aim to learn and use both classifiers at test
time. Different from these pixel-level adversarial adaptation
methods which handle the image-to-image adaptation, our
method uses the generative adversarial learning strategy to
address the image-to-video adaptation on the heterogeneous
feature level, where the source images and target videos are
represented by different types of features.

III. SYMMETRIC GANS FOR HETEROGENEOUS

FEATURE AUGMENTATION

A. Problem Formulation

Our core idea of addressing heterogeneous domain adap-
tation from image to video is to learn a common fea-
ture representation with superior transferability between
the two domains. Different from the exiting embedding
space methods [23], [25], [46] and the asymmetric mapping
method [27], we attempt to augment the original image and
video features respectively with their corresponding comple-
mentary features to generate the domain-invariant features.
Motivated by the good performance of generative model in
GANs, we propose symmetric GANs (Sym-GANs) to build
the bidirectional mappings between source image and target
video for the feature augmentation. In Sym-GANs, one GAN
maps image to video, and the other is responsible for the
video-to-image mapping. Using Sym-GANs, the image feature
from the source domain can be augmented with its projected
representation in the video feature space and the video feature
from the target domain can be augmented with its mapped
representation in the image feature space. The augmented
features of both domains are more powerful and descriptive by
preserving the static information in image as well as the tem-
poral motion in video. To improve the discriminative ability of
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Fig. 1. The overall architecture of our method. There are three components: feature extractor (a), Symmetric GANs (b) and classifier (c), which are learned
in the training phrase. The test procedure of target labels’ inference is shown in (d).

the augmented feature, we present a joint optimization method
to simultaneously learn the Sym-GANs and the classifier under
the class label supervision from the source domain. A formal
problem statement is given below.

Let X S = {xi
s|ns

i=1} denote ns images from the source
domain, where xi

s ∈ R
ds×1 represents the feature vector of the

i -th image. Let YS = {yi
s |ns

i=1} denote the class labels of X S

where yi
s ∈ {1, 2, ..., C} is the label of xi

s and C is the number
of classes. For each video in the target domain, we divide it
into several clips with the same length. Let XT = {xi

t |nt
i=1}

denote nt unlabeled video clips from the target domain, where
xi

t ∈ R
dt×1 represents the feature vector of the i -th video clip.

Note that in the heterogeneous domain adaptation problem,
ds �= dt . We now aim to learn the bidirectional mappings
between X S and XT , defined by GT : xs → xt and GS : xt →
xs . Then the augmented feature x̂s of the original image feature
xs is given by x̂s = [xs; GT (xs)] ∈ R

(ds+dt )×1. Similarly,
the augmented feature x̂t of the original video clip feature xt

is formulated by x̂t = [GS(xt ); xt ] ∈ R
(ds+dt )×1.

Since there is no direct corresponding between X S and XT

(i.e. unpaired image and video samples) for training the two
mappings, we assume that a video clip has a relationship with
any frame in it (i.e., paired frame and video samples). On the
other hand, video frames are actually a collection of images,
which could be easily adapted to the source image domain.
Thus for each video clip, we randomly select one frame and
all the selected frames compose the unlabeled video frame
data, denoted by X F = {xi

f |nt
i=1} where xi

f ∈ R
ds×1 indicates

the feature vector of frame from the i -th video. Consequently,
the mapping from video to image becomes GS : xt → x f and
the mapping from image to video is GT : x f → xt .

B. Proposed Architecture

The overall architecture of our method consists of three
key components: feature extractor, symmetric GANs, and
classifier, as shown in Figure 1. The symmetric GANs is a
new contribution of our work.

1) Feature Extractor: The images and video clips are rep-
resented by heterogeneous features. We extract the C3D [47]
feature to describe the video clips by capturing spatia-temporal
information such as the temporal evolution of human postures
and the continuously changing scenes. Considering the domain
shift between source images and target video frames, we adopt
a state-of-the-art deep domain adaptation method (i.e., JAN [5]
model) to learn the common CNN feature invariant to both
source image and video frame, using X S and X F as the
training data. This learned domain-invariant feature is called
image-frame feature in the rest of this paper. Accordingly,
both xs and x f are represented by the image-frame feature.
In contrast to the video feature, the image-frame feature tends
to highlight the static information such as human body posture
and appearance. Thus it would be beneficial to combine the
complementary image-frame feature and video feature for
video recognition.

2) Symmetric GANs: The Generative Adversarial Network
(GAN) [4] has been successfully applied in many visual tasks,
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including image-to-image translation [44], [48]–[50], seman-
tic segmentation [51], person re-identification [52] and object
detection [53]. A traditional GAN consists of two competing
networks: a generator G and a discriminator D. G and D
compete with each other in a two-player minmax game. The
generator G tries to produce samples as realistic as possible to
confuse the discriminator D while the discriminator D aims
to differentiate between the generated samples and the real
ones as correctly as possible. More formally, G and D can be
trained jointly by solving

min
G

max
D

Ex[log D(x)] + Ez[log(1 − D(G(z)))], (1)

where D(x) represents the probability that x comes from the
real data distribution rather than the distribution modeled by
the generator G.

In this paper, we build two GANs with symmetric structures
to learn the bidirectional mappings between the image-frame
feature space and the video feature space. Let GT represent the
mapping from the image-frame feature to the video feature,
associated with the discriminator DT . Given the paired training
data X F and XT , to train the GT and DT , the loss function
is formulated as

LG AN (GT , DT , X F , XT )

= Ext∼PT (xt )[log DT (xt )]
+ Ex f ∼PF (x f )[log(1 − DT (GT (x f )))]. (2)

GT attempts to generate video features GT (X F ) that resemble
the real video features XT , while DT tries to distinguish
GT (X F ) from XT . In other words, GT aims at minimizing
the loss against an adversarial DT that tries to maximize it:

min
GT

max
DT

LG AN (GT , DT , X F , XT ). (3)

Similarly, the mapping function GS from the video feature
to the image-frame feature and its associated discriminator DS

are jointly trained by the following loss:
LG AN (GS, DS , XT , X F )

= Ex f ∼PF (x f )[log DS(x f )]
+ Ext∼PT (xt )[log(1 − DS(GS(xt )))], (4)

and the optimization is given by

min
G S

max
DS

LG AN (GS, DS, XT , X F ). (5)

In the experiment, we replace the negative log likelihood
objective in the loss LG AN (Eq. 2 and Eq. 4) by a least square
loss [54]:

LG AN (GT , DT , X F , XT )

= Ext∼PT (xt )[DT (xt )
2]

+ Ex f ∼PF (x f )[(1 − DT (GT (x f )))
2], (6)

LG AN (GS, DS , XT , X F )

= Ex f ∼PF (x f )[DS(x f )
2]

+ Ext∼PT (xt )[(1 − DS(GS(xt )))
2], (7)

which performs more stably during training and yields better
results.

Besides the aforementioned generative adversarial loss,
we also introduce CORAL loss [33] to minimize the dif-
ference between the generated features and the real fea-
tures in second-order statistics. As a simple and effective
criterion, the CORAL loss can be easily integrated into a
deep neural network. Let T = [x1

t , x2
t , ..., xnt

t ] ∈ R
dt×nt

denote the video feature matrix and F = [x1
f , x2

f , ..., xnt
f ] ∈

R
ds×nt denote the image-frame feature matrix of video

frames. By the generator GT , the synthesized video fea-
ture matrix from the video frames is formed by T f =
[GT (x1

f ), GT (x2
f ), ..., GT (xnt

f )] ∈ R
dt×nt . By the generator

GS , the generated image-frame feature matrix from the videos
is formed by Ft = [GS(x1

t ), GS(x2
t ), ..., GS(xnt

t )] ∈ R
ds×nt .

For GT associated with DT , the CORAL loss is given by

LC O R AL(XT , GT (X F )) = 1

4d2
t
‖CT − CT f ‖2

F , (8)

where ‖ ·‖2
F is the squared matrix Frobenius norm, measuring

the distance between the second-order statistics (covariance)
of XT and GT (X F ). CT and CT f are the feature covariance
matrices of T and T f , respectively, calculated by

CT = 1

nt − 1
(T�T − 1

nt
(1�T)�(1�T)), (9)

CT f = 1

nt − 1
(T�

f T f − 1

nt
(1�T f )

�(1�T f )), (10)

where 1 ∈ R
dt×1 has all elements equal to 1.

For GS associated with DS , we introduce a similar CORAL
loss as well:

LC O R AL(X F , GS(XT )) = 1

4d2
s
‖CF − CFt ‖2

F , (11)

where the covariance matrices CF and CFt are given by

CF = 1

nt − 1
(F�F − 1

nt
(1�F)�(1�F)), (12)

CFt = 1

nt − 1
(F�

t Ft − 1

nt
(1�Ft )

�(1�Ft )). (13)

3) Classifier: With the learned mapping GT , we can aug-
ment the original image-frame feature of the source image
xs with its projected feature GT (xs) in the video space.
Similarly, the original video feature in the target domain xt

can also be augmented with its projected feature GS(xt ) in
the image-frame space with GS . In order to further improve
the discriminative ability of the augmented features, we trans-
form the projected video feature GT (xs) and the projected
image-frame feature GS(xt ) back to the image-frame space
and the video space, respectively, to generate new features
GS(GT (xs)) and GT (GS(xt )). We believe that the generated
features GS(GT (xs)) and GT (GS(xt)) are more discriminative
than their corresponding original features xs and xt , respec-
tively, since the generators GS and GT are jointly learned
with the classifier with the supervision information from the
labeled source data. Actually, the augmented feature in the
source domain is represented by x̂s = [GS(GT (xs)); GT (xs)]
and the augmented feature in the target domain is represented
by x̂t = [GS(xt ); GT (GS(xt ))]. These augmented features
are invariant to different domains, on which the classifier
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trained with source images can be adapted well to the target
videos. Moreover, by capturing both static appearance and
dynamic motion information, this hybrid representation would
significantly benefit improving the recognition performance.

Consequently, the input to the classifier is the augmented
feature and the output is the probability distribution of category
labels. We build a network with fully connected layers to
construct the classifier, denoted by f . Given the labeled
augmented source data X̂ S = {x̂i

s |ns
i=1} with its corresponding

class labels YS = {yi
s |ns

i=1}, we use cross-entropy loss to train
f , defined as

Lclass( f, X̂ S, YS) = −E(x̂s ,ys)∼Pdata(x̂s,ys) log( f (x̂s)ys ), (14)

where f (x̂s)ys indicates the probability assigned by the clas-
sifier f for the input x̂s to the class ys .

C. Learning

We have thus far described a deep domain adaptation
method, which combines adversarial objective, CORAL con-
straint and cross-entropy loss to learn domain-variant feature
representation between heterogeneous domains with superior
transferable, descriptive and discriminative abilities.

Taken together, all the loss functions mentioned above form
the complete objective:
L( f, X S , YS, X F , XT , GT , DT , GS, DS)

= LG AN (GT , DT , X F , XT ) + LG AN (GS, DS, XT , X F )

+ λ1LC O R AL (XT , GT (X F ))

+ λ2LC O R AL(X F , GS(XT ))

+Lclass( f, X̂ S, YS)

+Lreg(GT , DT ) + Lreg(GS, DS) + Lreg_ f ( f ), (15)

where Lreg(GT , DT ), Lreg(GS, DS) and Lreg_ f ( f ) are the
regularization terms to prevent the learned parameters of GT ,
DT , GS , DS and f from overfitting. They are defined by

Lreg(GT , DT ) = =
nG∑

i=1

‖W i
GT

‖2
F +

nD∑

i=1

‖W i
DT

‖2
F , (16)

Lreg(GS, DS) =
nG∑

i=1

‖W i
G S

‖2
F +

nD∑

i=1

‖W i
DS

‖2
F , (17)

Lreg_ f ( f ) =
n f∑

i=1

‖W i
f ‖2

F , (18)

where W i
GT

, W i
DT

, W i
G S

, W i
DS

and W i
f represent the layer-wise

parameters of GT , DT , GS , DS and f , respectively. nG , nD

and n f denote the layer numbers of the generator, the dis-
criminator and the classifier, respectively. This ultimately
corresponds to solving for the bidirectional mappings between
source image and target video (GT , DT , GS, DS) as well as
the cross-domain classifier f according to the optimization
problem:
( f ∗, G∗

T , D∗
T , G∗

S, D∗
S)

= arg min
GT ,G S, f

max
DT ,Ds

L( f, X S, YS , X F , XT , GT , DT , GS, DS).

(19)

As in the standard GAN framework, we solve this minimax
problem iteratively by first training DT and DS with the fixed
GT , GS and f , and then training GT , GS and f with the
learned DT and DS . The detailed training procedures are
illustrated in Algorithm 1.

D. Prediction

In the testing phrase as shown in Figure 1, an input video is
firstly divided into several video clips and the feature of each
clip xt is extracted by the C3D model [47]. Each video clip
feature is then mapped into the image-frame feature space
via the generator GS to generate the image-frame feature
GS(xt ). Next, GS(xt ) is transformed back to the video feature
space via the generator GT to produce the new discriminative
video clip feature GT (GS(xt )). Thus, the augmented feature
of each video clip is given by [GS(xt ); GT (GS(xt ))]. Next,
average across the augmented features of all the video clips
for generating the final augmented feature of the whole video.
At last, the augmented video feature is fed to the classification
network to predict the action class label.

E. Discussion

Our Sym-GANs is most related to HiGAN [55] and
SBADA-GAN [45]. The HiGAN and our Sym-GANs focus
on the same task of exploiting images for video recognition.
Although HiGAN and Sym-GANs use the same JAN and C3D
to extract the image and video features, respectively, they
resort to totally different network architectures to solve the
heterogeneous image-to-video domain adaptation. The main
differences between HiGAN and Sym-GANs are: (1) HiGAN
maps target video to source image for adaptation, without cap-
turing the motion information within the videos for classifica-
tion. While Sym-GANs learns bidirectional mapping between
source image and target video to generate the domain-invariant
augmented feature which can represent both static appearance
and dynamic motion information for video classification; (2) In
HiGAN, the two level GANs are learned in a step-by-step
manner and the MKL method is used to train classifiers.
Different from the separate learning of the two-level GANs
and classifiers in HiGAN, the symmetric GANs and the
classification network are jointly trained in an end-to-end
manner in Sym-GANs, which can learn more discriminative
and transferable feature for domain adaptation. (3) Thanks
to the augmented feature learned in an end-to-end manner,
our Sym-GANs achieves better results than HiGAN, as shown
in Table III.

Although the bi-directional mapping between source image
and target video in our Sym-GANs is similar to the
bi-directional image transformation between different image
domains in SBADA-GAN to some extent, Sym-GANs and
SBADA-GAN focus on different tasks using different net-
work architectures with different losses. The main differences
between Sym-GANs and SBADA-GAN are: (1) SBADA-GAN
addresses the image-to-image adaptation on the pixel level
where the source and target images are with the same size.
In contrast, Sym-GANs investigates the heterogeneous image-
to-video adaptation on the feature level where the source
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Algorithm 1 Symmetric GANs for Image-to-Video Adaptation

image and target video are represented by different types of
features with different feature dimensions; (2) SBADA-GAN
linearly combines the outputs of the source and target clas-
sifiers for image classification on the target domain and the
combination weights need to be chosen on a validation set in
each setting. While Sym-GANs proposes feature augmentation
to automatically learn domain-invariant feature on which the
source classifier can adapt well to the target domain.

IV. EXPERIMENTS

A. Datasets

The experiments are conducted on two video benchmarks,
i.e., UCF101 (U) [56] and HMDB51 (H) [57], to evaluate
the performance of the proposed method. We report the
mean of classification accuracies for all methods. For the
UCF101 as the target video domain, the source images come
from the Stanford40 (S) dataset [58]. For the HMDB51 as
the target video domain, the source image domain consists of
Standford40 dataset and HII dataset [59], denoted by EADs
(E) dataset. So there are two image-to-video adaptation tasks:
S→U and E→H.

The UCF101 dataset is an action database of videos col-
lected from YouTube. It has 13000 videos with 101 action

categories. There are mainly five typical kinds of actions,
including sports, playing musical instruments, body-motion
only, human-object interaction and human-human interaction.
This dataset is challenging for action recognition since most
of the videos are recorded in realistic scenes with large varia-
tions in illumination, cluttered background, object appearance,
motion style, viewpoint and camera movement.

The HMDB51 dataset has around 7,000 video clips with
manual annotations covering 51 action categories. These clips
are extracted from various sources, including commercial
movies and public datasets (e.g., YouTube and Google videos).
This dataset provides adequate variety, where the action videos
can be mainly divided into five types, ranging from the general
body movements such as push and kick to the fine-grained
facial expressions like laugh and smile. In comparison with
the UCF101 dataset, HMDB51 dataset involves more cluttered
background and larger intra-class variations, for the reason that
it presents a fine multifariousness of surroundings, situations
and light conditions.

The Stanford40 dataset contains images of humans per-
forming 40 diverse daily actions. All the images are obtained
from Google, Bing, and Flickr. Each action category has 180 to
300 images with large variations in human pose, appearance
and background clutter.
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Fig. 2. Several examples of source images and target video frames on the tasks of S→U (a) and E→H (b). For each task, the upper part shows the images
from the source domain, and the lower part shows the video frames from the target domain. (a) S→U. (b) E→H.

The EADs dataset consists of Stanford40 and HII datasets.
The HII dataset has a total of 1972 images with 10 action
classes, and each class contains at least 150 images.

For the S→U task, 12 common action categories are cho-
sen between the UCF101 and Stanford40 datasets, including
“brushing teeth”, “cleaning floor”, “climbing”, “cutting veg-
etables”, “playing guitar”, “playing violin”, “biking”, “horse
riding”, “rowing”, “shooting”, “walking with dog” and “writ-
ing on a board”. The source domain is comprised of all the
labeled images from the Stanford40 dataset. The unlabeled
videos from the UCF101 dataset construct the target domain.
The UCF101 dataset (target domain) is split into two parts:
one for training and the other for test.

For the E→H task, all the labeled images from the EDAs
dataset construct the source domain. The target domain con-
sists of unlabeled videos from the HMDB51 dataset. There are
13 shared action categories between these two datasets, includ-
ing “clap”, “climb”, “drink”, “hug”, “jump”, “kick”, “kiss”,
“pour”, “push”, “run”, “smoke”, “talk” and “wave”. Similar to
the UCF101 dataset, the HMDB51 dataset (target domain) is
also split into training and test parts. Some examples of images
and videos on these four datasets are shown in Figure 2.

The evaluation protocol is the same for the two image-
to-video adaptation tasks. For the target domains (i.e.,
UCF101 and HMDB51 datasets), since they both provide

three splits of training and test sets, the average classification
accuracy over these three splits is reported for evaluation. It is
worth emphasizing that any labels of the target data are not
used during the training phase.

B. Setup

1) Features: We split each video into 16-frame clips without
overlap and extract a 512D feature vector of each video clip
from the pool5 layer of 3D CoveNets [47] which is trained
on the Sports-1M dataset [60]. The clip features from the
target training videos construct the training data of target
domain. For each video clip, we randomly sample one frame
and all the frames from all the video clips compose the
video frame domain. We utilize the JAN [5] method based on
the ResNet [61] to learn the transferable image-frame feature
between source images and target video frames, which comes
from the pool5 layer of JAN with the dimension of 2048.

2) Implementation details:
a) Network architecture: To build the two generators GT

and GS in Sym-GANs, we use three-layered feed-forward
neural networks activated by relu function: 2048 → 1024 →
1024 → 512 for GT and 512 → 1024 → 2048 → 2048 for
GS . For the two discriminators DS and DT , we both use two
fully connected layers (2560 → 640 → 1) activated by relu
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function, except for the last layer. For the classifier f , we use
four-layered feed-forward neural networks (2560 → 1280 →
640 → 256 → the number of categories), activated by relu
function, except for the last layer.

b) Training detail: We employ the Adam solver [62] with
a batch size of 128. All the networks are trained from scratch
with the learning rate of 0.00008. Since the two GANs in
Sym-GANs are symmetric, we set λ1 = λ2 for the CORAL
losses to simplify the parameter selection. Since the adversarial
and CORAL losses have different orders of magnitude, we set
λ1 = λ2 = 100 to somehow balance them.

3) Baseline methods:
a) Homogeneous Domain Adaptation: In order to vali-

date the effectiveness of capturing temporal motion informa-
tion for image-to-video adaptation in our method, we compare
our method with the existing homogeneous domain adaptation
methods where each target video is represented by the static
image feature without considering the temporal relationship
between sequential. The homogeneous domain adaptation
methods include traditional shallow and deep methods, where
the source and target data are represented by the same type
of feature. For traditional shallow methods, source image is
represented by the feature extracted from the pool5 layer of
ResNet. Each target video is represented by the mean of the
ResNet features of all the frames. For deep methods, we take
source images and target frames as input to train the networks.
At test time, the output scores (from the last fc layer) of all the
frames within a video are further averaged to determine the
class label of the video. The homogeneous domain adaptation
methods are listed below.

• SVM [63] trained on the labeled source data is used as
a baseline without domain adaptation.

• GFK [64] proposes a geodesic flow kernel to leverage
low-dimensional feature structures.

• JDA [20] aims to jointly adapt both marginal and con-
ditional distributions in a principled dimension reduc-
tion procedure, and generate new feature representa-
tion with good robustness to substantial distribution
difference.

• ARTL [65] learns an adaptive classifier by modeling the
distribution adaptation and label propagation in a unified
framework based on the regularization theory and the
structural risk minimization principle.

• TJM [18] designs a principled dimensionality reduction
method to simultaneously perform feature matching and
reweighting instances across domains for domain adapta-
tion.

• TKL [21] introduces a kernel-based transfer learning
method that learns a invariant kernel to different domains
by straightly aligning the distributions of source and
target domains in the reproducing kernel Hilbert space.

• CORAL [34] diminishes the domain shift by matching
the feature distributions of the source and target domains
with the respect of their second-order statistics.

• LRSR [22] transforms both the source and target data
to a shared feature space, in which source samples can
be effectively combined to represent each sample in the
target domain.

• BDA [19] adaptively weights the importance of both
marginal and conditional distribution adaptations.

• ATI [66] proposes an iterative method for domain adap-
tation which iteratively label the target samples and
compute a source-to-target mapping by minimizing the
distances of the assignments.

• MEDA [67] uses the principle of structural risk
minimization to learn a domain-invariant classifier in
Grassmann manifold, and simultaneously aligns the dis-
tributions of different domains in a dynamic manner to
quantitatively calculate the relative importance of mar-
ginal and conditional distributions.

• ResNet [61] is performed on the labeled source data as
a baseline without domain adaptation.

• DAN [30] introduces multiple kernel learning to match
the mean embeddings of the source and target data dis-
tributions for reducing the domain discrepancy in higher
task-specific layers of deep neural networks.

• RTN [31] jointly learns adaptive classifiers and transfer-
able features with the assumption that the main difference
between the source and target classifiers is formulated a
residual function.

• DANN [38] enjoins the hidden layers of deep neural
networks to learn feature representations that can not be
distinguished between the source and target domains.

• JAN [5] reduces the domain shift by aligning the joint
distributions of multiple domain-specific layers which is
implemented by jointly maximizing mean discrepancies
of feature distributions of these layers

• DAL [28] introduces a new domain adaptation layer to
reduce the domain discrepancy by aligning source and
target distributions to a reference one.

• WGRL [68] employs the Wasserstein distance to mea-
sure the domain discrepancy between the source and
target data which is calculated by a neural network, and
minimizes this distance in an adversarial fashion to learn
the feature representations with superior transferability.

b) Heterogeneous Domain Adaptation: To evaluate the
superiority of learning augmented feature using symmetric
GANs on image-to-video adaptation, our method is also com-
pared with several existing heterogeneous domain adaptation
methods where the source and target data are represented by
different types of features. Specifically, the source images
are represented by image-frame features extracted by the
finetuned JAN model and the traget videos are represented by
C3D features. The compared heterogeneous domain adaptation
methods are listed as follows:

• KCCA [23] applies kernel method to canonical correla-
tion analysis for heterogeneous domain adaptation.

• HEMAP [46] transforms both source and target data
into a common subspace using a spectral embedding
method and incorporates a sample selection algorithm to
select related source samples for further improving the
adaptation performance.

• DAMA [25] proposes a manifold alignment based
approach to construct mappings for linking feature spaces
of different domains.
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TABLE I

COMPARISON OF CLASSIFICATION ACCURACY (%) BETWEEN
OUR METHOD AND THE HOMOGENEOUS DOMAIN

ADAPTATION METHODS

• HFA [24] first augments the heterogeneous features and
then finds the two projection matrices to deal with the
augmented features.

• CDLS [26] resorts to learning typical cross-domain land-
marks to generate a good feature space for transferring
knowledge between heterogeneous domains.

• HiGAN [55] combines a low-level conditional GAN and
a high-level conditional GAN to learn a domain-invariant
feature representation between source images and target
videos.

Since the methods of KCCA, HEMAP, DAMA, HFA and
CDLS should require some labeled data in the target domain,
we assign labels to 80 target videos per category for train-
ing. Note that our method can be easily extended to the
semi-supervised heterogeneous domain adaptation for fair
comparison, where we take labeled target videos into account
when training classifier. The HiGAN can work in both unsu-
pervised and semi-supervised scenarios, so we compare our
method with it in both unsupervised and semi-supervised
settings.

C. Results

1) Comparison With Homogeneous Domain Adaptation
Methods: Table I shows the comparison results between
homogeneous domain adaptation methods and our method.
The upper part reports the results of traditional shallow meth-
ods, the middle part reports the results of deep methods and the
last row is the result of our method. From Table I, we can have
the following observations. (1) Compared with those homoge-
neous methods which extract static frame features for video
representation, our method achieves much better classification
performance, clearly demonstrating the benefit of the proposed
feature augmentation adaptation strategy by simultaneously
capturing the temporal motion information between sequential
frames and static appearance features within individual frames.
(2) On the S→U task, almost all the traditional shallow

TABLE II

COMPARISON OF CLASSIFICATION ACCURACY (%) BETWEEN
OUR METHOD AND THE HETEROGENEOUS DOMAIN

ADAPTATION METHODS

TABLE III

COMPARISON OF CLASSIFICATION ACCURACY (%)
BETWEEN OUR METHOD AND THE HIGAN

methods and deep methods perform better than the baseline
SVM and ResNet, respectively, which indicates that leveraging
images can improve video classification performance to some
extend. While on the E→H task, half of traditional shallow
methods substantially underperform the baseline SVM, which
might result from the large difference between source images
and target video frames, leading to negative transfer [69].
On the other hand, deep methods outperform the baseline
ResNet, which verifies that deep neural networks work better
at addressing the negative transfer issue. (3) It is interesting
to observe that traditional shallow domain adaptation methods
achieve comparable results with deep methods on the easy
task of S→U and perform worse than deep methods on the
difficult task of E→H. This further implies that deep models
are excellent in handling more challenging domain adaptation,
benefited from the end-to-end learning of domain-invariant
feature and classifier.

2) Comparison With Heterogeneous Domain Adaptation
Methods: Table II demonstrates the classification accuracies
of heterogeneous domain adaptation methods. The first row
reports the results of classifiers only trained on the target
domain. Apparently, our approach outperforms all the com-
parison methods on both tasks. Note that the HFA method
is more related to our method, which also augments features
for heterogeneous domain adaptation. The higher classifica-
tion accuracies achieved by our method than HFA clearly
confirms that the deep learning based Sym-GANs can learn
domain-invariant augmented feature with more powerful trans-
ferability and distinguishability for heterogeneous image-to-
video adaptation, producing a significant boost in performance.
In Table III, we compare our method with the HiGAN method
which can work in both unsupervised and semi-supervised sce-
narios. The encouraging results highlight the key importance
of symmetric architecture as well as feature augmentation for
effective heterogeneous domain adaptation.

D. Ablation Study

To analyze the proposed approach in depth, ablation study
is conducted for empirically evaluating the importance of
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Fig. 3. Feature visualization: t-SNE of Ours-original feature representations on the source domain (a) and the target domain (c); t-SNE of our feature
representations on the source domain (b) and the target domain (d). Different colors denote 12 different action categories. (a) Ours-orginal: Source=S.
(b) Ours: Source=S. (c) Ours-orginal: Target=U. (d) Ours: Target=U.

TABLE IV

COMPARISON OF CLASSIFICATION ACCURACY (%)
BETWEEN OUR METHOD AND THE SINGLE GAN

TABLE V

CLASSIFICATION ACCURACY (%) OF DIFFERENT LOSS FUNCTIONS

each individual component. To prove the effectiveness of
symmetrical structure in Sym-GANs, we perform an ablation
study and report the results on both tasks in Table IV. Here
we compare our method with other two single-GAN variants:
only GT learns the mapping from the image-frame feature
to the video feature and only GS learns the mapping from
the video feature to the image-frame feature. From Table IV,
we conclude that GT and GS are complementary, as their
fusion significantly improves the recognition performance on
both tasks.

In Table V, we analyze the effectiveness of different loss
functions. We compare our method with other four varia-
tions: without adversarial loss, without CORAL loss, replacing
CORAL loss with L1 loss and L2 loss, respectively. It is
obvious that the recognition results will substantially degrade
when removing the adversarial loss or the CORAL loss,
indicating that both these two losses are critical to the overall
performance. Compared with the two distance losses (i.e.,
L1 and L2), the CORAL loss achieves the highest accuracy,
which demonstrates the effectiveness of aligning the distrib-
utions of the generated and real features by exploring their
second-order statistics in our method.

In Table VI, we compare our method with another feature
augmentation method, called Ours-original. In this method,

TABLE VI

COMPARISON OF CLASSIFICATION ACCURACY (%) BETWEEN THE ORIGI-
NAL FEATURES AND THE GENERATED NEW FEATURES

the augmented features for the source and target domains are
represented by x̂s = [xs; GT (xs)] and x̂t = [GS(xt ); xt ],
respectively. In our method, the augmented source and target
features are represented by x̂s = [GS(GT (xs)); GT (xs)] and
x̂t = [GS(xt ); GT (GS(xt ))], respectively. It is interesting to
notice that our method outperforms the Ours-original, proving
that the generated features GS(GT (xs)) and GT (GS(xt )) are
more discriminative than their corresponding original features
xs and xt , respectively.

To further demonstrate the transferability and distinguisha-
bility of augmented features (i.e., x̂s and x̂t ), we visualize
in Figure 3(a)-3(d) the t-SNE embeddings [70] of augmented
features of source images and target videos learned by the
Ours-original and our method, respectively, on the S → U
task. Figure 3(a) and 3(c) demonstrate the source and target
features of Ours-original, respectively. Similarly, Figure 3(b)
and 3(d) show the source and target features learned by our
method, respectively. Compared with the augmented features
learned by the Ours-original, the features of the our method
become more clear to be categorized, which suggests that the
augmented features of our method are more discriminative
than that of the Ours-original, since the generators GS and
GT are jointly learned with the classifier with the supervision
information from the labeled source data. Besides, the source
and target domains are aligned better in our method, which
shows the superior transferability of the augmented features
learned by our method.

E. Convergence Performance

Figure 4 shows the convergence performance of training
discriminators of Ds and Dt as well as generators of Gs

and Gt in Sym-GANs. It can be observed that Sym-GANs
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Fig. 4. Convergence performance of training Sym-GANs (i.e., DS , G S , DT and GT ) on tasks of S→U (a) and E→H (b). (a) Convergence performance on
S→U. (b) Convergence performance on E→H.

can reach a steady performance on both datasets and grad-
ually converge, which indicates the training advantage of
Sym-GANs in cross-domain tasks.

V. CONCLUSION

This paper mainly solves the problem of heterogeneous
domain adaptation from images to videos for video recogni-
tion, where the image and video are represented by different
types of features. We have proposed a symmetric adversar-
ial learning approach to learn domain-invariant augmented
feature for heterogeneous image-to-video adaptation. To this
end, two generative adversarial networks have been built to
model the bidirectional mappings between source images and
target videos, which also generates the augmented features
of both image and video features. These augmented features
can preserve both static appearance and temporal motion
information with superior transferable, distinguishable and
descriptive abilities. Moreover, a joint optimization algorithm
has been presented to train the Symmetric GANs and the
classifier simultaneously. Extensive experiments on the chal-
lenging UCF101 and HMDB51 video datasets validate the
effectiveness of the proposed method on exploiting images
for video recognition.
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