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Abstract

Video captioning is a challenging task that involves not

only visual perception but also syntax representation learn-

ing. Recent progress in video captioning has been achieved

through visual perception, but syntax representation learn-

ing is still under-explored. We propose a novel video cap-

tioning approach that takes into account both visual per-

ception and syntax representation learning to generate ac-

curate descriptions of videos. Specifically, we use sentence

templates composed of Part-of-Speech (POS) tags to repre-

sent the syntax structure of captions, and accordingly, syn-

tax representation learning is performed by directly infer-

ring POS tags from videos. The visual perception is im-

plemented by a mixture model which translates visual cues

into lexical words that are conditional on the learned syn-

tactic structure of sentences. Thus, a video captioning task

consists of two sub-tasks: video POS tagging and visual

cue translation, which are jointly modeled and trained in an

end-to-end fashion. Evaluations on three public benchmark

datasets demonstrate that our proposed method achieves

substantially better performance than the state-of-the-art

methods, which validates the superiority of joint modeling

of syntax representation learning and visual perception for

video captioning.

1. Introduction

Automatically generating a natural language description

of a video has attracted remarkable attention for its impor-

tant applications, such as semantic video search, visual in-

telligence in chatting robots and aid for people to perceive

the world around them. Previous works [21, 23, 16, 33]

describe videos using template-based methods which first

manually create fix-structured sentence templates and then

fill in the template with the corresponding words. Recently,

increasing studies have shown benefits of deep learning on
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video captioning, owing to the great success of deep neural

networks in both computer vision and natural language pro-

cessing. Many deep learning methods [11, 38, 37, 29] usu-

ally build an encoder to compress the input video into a fea-

ture representation and a decoder to generate descriptions

given the video feature. Most existing methods of video

captioning [48, 41, 13, 30, 4, 12, 8, 1] mainly focus on in-

vestigating various visual perception models by exploiting

informative semantics without considering learning of syn-

tax representation for generating sentences.

In this paper, we propose a novel video captioning ap-

proach that takes into account both visual perception and

syntax representation learning to generate accurate sen-

tences of videos. In an analogy to natural language un-

derstanding, the syntactic structure information is obviously

essential for a sentence to interpret the video. For example,

the sentences of “A wolf is eating a sheep” and “A wolf and

a sheep are eating” have similar semantic primitives, but

differ in their meanings with different syntactic structures.

Thus, learning syntax representation will benefit a lot to the

video captioning. Specifically, we use sentence templates

composed of Part-of-Speech (POS) tags to represent the

syntax structure of captions, and accordingly, syntax rep-

resentation learning is performed by directly inferring POS

tags from videos. The visual perception is implemented by

translating visual cues into lexical words to exploit seman-

tic primitives conditioned on the corresponding POS tags.

Therefore, the video captioning task in our method simul-

taneously performs two sub-tasks: video POS tagging and

visual cue translation. To this end, an end-to-end trainable

network is built to jointly model and train these two sub-

tasks.

To automatically tag videos with POS, a sequence-to-

sequence (S2S) model is employed to generate POS se-

quences from input videos. The POS sequence can be re-

garded as an interpretation of syntactic structure of textual

description for the video. Since the POS tag categories are

much fewer than word categories, it is much easier to use

the S2S model for generating a POS sequence than a real
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Figure 1. The main process of our method for video captioning.

For an input video, we first learn its syntax representation via video

POS tagging and then translate the visual cues to words given the

inferred POS via a mixture model.

sentence. Generally speaking, a complete sentence should

be constituted of various kinds of grammatical elements.

Therefore, we introduce a simple yet effective constraint

term to diversify the parts of speech in each generated sen-

tence to guarantee the completeness of captions. The con-

straint term encourages each POS to appear in the generated

sentence at least once by using L2 normalization.

In translating visual cues to words, the distribution of

word frequencies in captions is extremely imbalanced, i.e.,

a small fraction of the words appears more frequently than

other words, which is known as the Zipfian law of word

distribution in nature languages. So directly using imbal-

anced data to train the decoder of softmax word classifiers

will lead to the word bias problem, which degrades the cap-

tioning performance. To address this issue, an explicit mix-

ture model is newly proposed to generate the probability

distribution of words conditioned on the POS tags, which

captures intrinsic semantic primitives by perceiving relevant

visual cues for generating accurate words without bias. In

the mixture model, each component is sensitive to a spe-

cific visual cue for generating words that are semantically

related to the visual cue. Thanks to the open-closed char-

acteristic in linguistics, words can be relatively equally di-

vided into multiple subsets according to the POS. In each

subset the frequencies of words do not vary dramatically, so

the word classifier for each subset will not suffer from the

bias problem. The multiple word classifiers are regarded

as the visual cue-specific components to compose the mix-

ture model conditioned on the corresponding POS, which

enables the most relevant component to dominate the gen-

erating of lexical word.

The main process of our method for video captioning is

demonstrated in Figure 1. Overall, the main contributions

are as follows:

• We propose a novel video captioning approach that

jointly learns the syntax representation and translates

visual cues to generate accurate textual descriptions.

An end-to-end trainable network is built to model the

joint probability of the POS sequence and the caption

words by simultaneously capturing the syntactic struc-

ture and exploiting the semantic primitives.

• We design a mixture model of multiple visual cue-

specific components to handle the word bias problem

caused by imbalanced classes inherent in linguistic

data, with the guidance of the interpretable and acces-

sible POS tag.

• Experiments on three public datasets comprehensively

verify the superior performance of our method on

video captioning compared with the state-of-the-art

methods.

2. Related Work

Early methods of video captioning are mainly based

on templates, and the sentence templates should be pre-

defined. [21] is one of the first trails to describe human ac-

tivities in videos by extracting semantic primitives of videos

and associating them with components of the template to

form a sentence. Krishnamoorthy et al. [23] developed a

holistic approach to directly select the best subject-verb-

object triplet as the video caption. Guadarrama et al. [16]

built semantic hierarchies and filled in words to generate

captions of videos, where the verbs are generated by a zero-

shot technique of action recognition. These methods gen-

erate fixed-structure sentences with limited diversity of nat-

ural language. Different from these template-based meth-

ods with fixed syntactic structure, our method automatically

infers the human-interpretable POS from the input video,

which benefits generating accurate and diverse sentences.

Recently, sequence-to-sequence based methods have be-

come prevalent in video captioning. [38] extracts CNN fea-

tures to represent input videos and uses an LSTM to gen-

erate video descriptions. Some recent efforts have been

made on exploring better video representation. The S2VT

[37] encodes frame-level features into a global feature of a

video and decodes it into a sentence via an encoder-decoder

LSTM. [29, 4] exploit the hierarchical structures of the

videos for captioning. Concretely, [29] uses a hierarchi-

cal LSTM to encode videos along time, and [4] adapts the

cells of hierarchical LSTM to be boundary aware for better

representing videos. Chen et al. [8] used a reinforcement-

learning method to select informative frames for video cap-

tioning. Several other methods manage to exploit semantic

cues or concepts for video captioning. [33] first learns the

semantic representations from videos via conditional ran-

dom field, and then translates them to captions using sta-

tistical machine translation. Donahue et al. [11] extended

[33] by changing the statistical machine translation method
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to the LSTM [19] decoder. [48, 41, 13] introduce the atten-

tion mechanism for video captioning, where [48, 41] select

salient spatial-temporal features to generate sentences and

[13] uses hierarchical attention to capture the temporal dy-

namics for captioning. Wang et al. [39] exploited the bidi-

rectional cues between the video and caption by an encoder-

decoder-reconstructor to describe videos. [30, 12] use the

interpretable cues as the trade-off between the video and

natural language. Aafaq et al. [1] considered both spatio-

temporal dynamics and high-level semantic concepts, and

employed Short fourier transform to enrich the visual rep-

resentation for video captioning. Different from these se-

mantic concept based methods, our method not only learns

semantic primitives but also learns the syntax representation

from video, which further improves the accuracy of gener-

ated sentences.

There are several studies on leveraging POS for image

captioning. He et al. [18] directly used the POS tag of

the current word to locally guide the prediction of the next

word, while our method learns the global syntax represen-

tation (i.e. POS tag sequence) to generate accurate captions.

Deshpande et al. [10] pre-defined 1,024 POS templates

from images by clustering and fed the template with the im-

age into an S2S model to generate the caption, while our

method flexibly generates POS tag sequences from videos

and exploits multiple visual cues to boost video captioning.

Our method predicts sentences conditioned on the POS tags

via a mixture model to fully exploit visual cues from videos

for precise caption generation.

Our method also differs from the two-stage image cap-

tioning methods [24, 27, 42] which first generate sentence

templates with slots tied to object entities, and then filling

the slots using object detectors. Our method simultaneously

learns not only visual concepts but also the syntax repre-

sentation, thus efficiently exploiting syntactic structure and

semantic primitives to generate accurate sentences.

3. Our Approach

Our method contains two key modules: syntax repre-

sentation learning and visual cue translation, as shown in

Figure 2. The syntax representation learning module takes

extracted video features and embedded previous words as

input and outputs POS sequences using a sequence-to-

sequence (S2S) model, also namely video POS tagging.

The visual cue translation module is implemented by a mix-

ture of multiple components explicitly conditioned on the

inferred POS tags, where each component takes specific vi-

sual cue features as input. We build an end-to-end trainable

network to jointly model the video POS tagging and visual

cue translation for video captioning.

For each input video v, our model generates its corre-

sponding POS sequence t = (t1, · · · , tN ) and word se-

quence s = (s1, · · · , sN ), where N is the number of words

Visual Cue Translation

Word – “trampoline”

POS - NN

Mixture 
Model

POS Tag GeneratorWord
Embedder

Feature 
Extractors

Context

Motion

Object

Property

POS Tagging 

Explicit Mixture 
Model

Video

Previous Words

“A dog is 
pouncing on a”

Visual Cue Translation

Syntax Representation Learning

Figure 2. The overall architecture of our method. There are two

key modules: syntax representation learning and visual cue trans-

lation. The syntax representation learning module takes video

features extracted by feature extractors and embedded previous

words as input and outputs POS sequences. The visual cue transla-

tion module is implemented by a mixture of multiple components

where each component takes specific visual cue features as input

to output lexical words.

in a sentence. ti indicates the i-th POS tag, belonging to a

pre-defined POS tag set T which includes 26 POS tags and

1 tag denoting the end of sentence, i.e., ti ∈ T . si repre-

sents the i-th word, belonging to a fixed vocabulary S , i.e.,

si ∈ S .

A probabilistic directed acyclic graph is built to learn the

joint probability of the POS sequence t and the caption s.

The joint probability of t and s given a video v is formulated

by

p(t, s|v; θ) =
N
∏

i

p(ti|s<i, v; θt)p(si|ti, v; θs), (1)

where θ = θt ∪ θs represents the model parameters

and s<i indicates all the previous words at time step i.

p(ti|s<i, v; θt) means that the generation of POS tag ti at

time step i is conditioned on the input video v and all the

previous words s<i to determine its contextual location in

a sentence. p(si|ti, v; θs) represents that the generation of

word si is conditioned on its corresponding POS tag ti as

well as the video v. To learn the optimal parameters θ∗, we

maximize the likelihood function over the training data:

θ∗ = argmax
θ

∑

v∈V

∑

s∈Sv

N
∑

i=1

(

log p(ti|s<i, v; θt)

+ log p(si|ti, v; θs)
)

,

(2)

where Sv ⊆ S is the caption set of the video v. Accord-

ingly, the overall optimization problem can be regarded as

jointly optimizing two terms in Eq. (2), corresponding to

video POS tagging and visual cue translation, respectively.
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3.1. Video POS Tagging

An S2S model is introduced to infer POS sequences from

input videos. The loss function for video POS tagging is

formulated as

Lt =
∑

v∈V

∑

s∈Sv

N
∑

i=1

− log p(ti|s<i, v; θt). (3)

To guarantee the diversity of the parts of the speech in

each sentence. We encourage each POS tag to appear in a

sentence at least once. This constraint is given by

Lc =
∑

v∈V

1√
N

||sgn(
N
∑

i=1

yi)− 1||2, (4)

where yi is a one-hot vector indicating the class of the POS

tag, 1 is an all-one vector with the same dimension as yi,

N is the number of POS tags in a sentence, and sgn(·) is

the sign function. Obviously, the gradient of the function

is discontinuous, so we reduce the impact on the final loss

function by multiplying with a small coefficient to avoid the

collapse during training.

In training, the POS of each training video can be eas-

ily obtained via the existing language POS tagging method,

such as NLTK tool [45], without manual annotation.

3.2. Visual Cue Translation

The goal of visual cue translation is to classify the visual

cues into words conditioned on the POS tags for generat-

ing video captions. The loss function for this sub-task is

formulated as

Ls =
∑

v∈V

∑

s∈Sv

N
∑

i=1

− log p(si|ti, v; θs). (5)

To avoid word bias problem of representing various se-

mantics in natural language when using a single softmax

classifier, a mixture model is designed to formulate the con-

ditional probabilities of words p(si|ti, v; θs):

p(si|ti, v; θs) =
J
∑

j=1

αjp(si|ti, v; θjs),
J
∑

j=1

αj = 1, (6)

where J is the number of mixture components, αj is the

mixture weight characterizing the prior probability of the j-

th component, and θjs is the parameters of j-th component,

i.e., θs = ∪J
j=1

θjs. Each mixture component describes a

categorical distribution over the sample space generated by

a non-linear model. These components are designed to be

sensitive to different visual cues in videos, and we call them

visual cue-specific components.

Specifically, the set of POS tags T is explicitly divided

into four subsets T j |4j=1
which correspond to the object,

Subsets POS tags

Object NN, NNS

Motion VB, VBD, VBG, VBN, VBP, VBZ

Property CD, JJ, JJR, RB

Context
CC, DT, EX, IN, MD, PRP, PRP$, RP, TO,

WDT, WP, WRB, BES, EOS

Table 1. The 27 tags are divided into four subsets. The words are

classified into POS by the NLTK tool [45]. We choose the top 24

most frequent POS tags in the video captioning corpus, and other

POS tags as the UNK tag. Because linking verbs do not contain

the motion information, we classify the verb “be” and its various

forms as the BES which represents contextual information.

motion, property and context cues of videos, respectively.

Table 1 shows the detailed division of the set of POS tags.

For instance, the POS “NN” (noun) corresponds to the ob-

ject cues of videos. Thus, the number of mixture compo-

nents is set to J = 4, and the corresponding mixture weight

αj is given by

αj =
∑

ti∈T j

p(ti|s<i, v; θt), j = 1, 2, 3, 4. (7)

The inputs of the four visual cue-specific components are

related to their corresponding visual cues. For example,

the “motion”-specific component takes the motion-related

video feature as input, and the “object”-specific component

takes the object-related feature as input. Existing generic

pre-trained CNN models, such as ResNets [17], Inceptions

[34] and C3D [35]), are readily adopted as feature extrac-

tors for extracting robust features to represent specific visual

cues of the video.

3.3. Training and Inference

The whole model is trained by the following loss func-

tion:

L = Lt + Ls + γLc, (8)

where γ is the coefficient of the constraint term Lc. Empiri-

cally, at the early stage of training, the POS tags of the gen-

erated sentence are often lacking of diversity. The effective-

ness of the constraint term could be obvious, and Lc would

guide the model to converge to a better solution. Since the

term is too restrictive, that is, not every sentence contains

all kinds of POS tags, Lc is suppressed later in the training

procedure. Accordingly, the coefficient of Lc is set to:

γ = exp(−βk), (9)

where k denotes the number of training epochs, and β is the

coefficient which is empirically determined by the learning

rate.
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During inference, given the video and a start token <S>

to the trained model, the first word is generated and fed to-

gether with the former input into the model to generate the

second word. The process is repeated until the ending to-

ken is predicted or the maximum length is reached. We use

beam search with a size of 5 to generate the final sentences.

3.4. Analysis of Mixture Model

In this subsection, we provide theoretical analysis of the

mixture model in Section 3.2 from the perspective of the

imbalanced classes. In linguistics, there is an open-closed

distinction among the words with different POS. Function

words (e.g., conjunctions) appear frequently but their num-

ber is finite and relative small (about 150 in the English

language), while content words (e.g., nouns) are just the

opposite. Benefiting from this characteristic, our mixture

model can address the imbalanced classes problem by divid-

ing the words into four subsets. Generally speaking, during

the back-propagation of training using imbalanced data, the

majority classes would produce major contribution to the

parameter update, which causes the model more sensitive

to the data in majority classes. In the proposed model, the

gradient of the loss function Ls is

∇θLs =
∑

v∈V

∑

s∈Sv

N
∑

i=1

− 1

∇θsp(si|ti, v; θs)
, (10)

where

∇θsp(si|ti, v; θs) =
J
∑

j=1

(

αj∇θ
j
s
p(si|ti, v; θjs) + p(si|ti, v; θjs)∇θtαj

)

.
(11)

As inferred from the first term in Eq. (11), the impact of a

word on the model parameters will be emphasized when the

POS tag identifies the word as content words. The amount

of content words in video captioning dataset is larger than

that of function words, so the overall impact of the content

words will be larger. The second term in Eq. (11) guarantees

that the probabilities of the POS will be updated only when

the word is correctly predicted.

We also find that the proposed mixture model can alle-

viate the softmax bottleneck problem in natural language

which has been revealed by [46, 20]. The softmax bot-

tleneck is about the case that a single softmax function

is used at the top of the network to obtain the probabil-

ity distribution over word categories, which is known as

the linear-softmax layer. When the number of output cat-

egory, i.e., all the words of the vocabulary, is much larger

than the representation dimension, the linear-softmax layer

will limit representation power. The detailed explanation

of the softmax bottleneck comes from the classical matrix

factorization theory, and the low-rank property of the log-

probability matrix prevents linear-softmax layer to exactly

catch all the appropriate words from the large vocabulary

set. Our mixture model in Eq. (6) integrates four softmax to-

gether, which provides a non-linear function, i.e., log-sum-

exp, during calculating the log-probability matrix, and the

matrix can be arbitrarily high-rank. In this way, the softmax

bottleneck problem is alleviated.

4. Experiments

4.1. Datasets

MSVD [6] comprises 1,970 video clips collected from

Youtube, each annotated with roughly 40 captions. Follow-

ing [37], we split the videos into three sets, consisting of

1,200 training, 100 validation and 670 testing videos, re-

spectively.

MSR-VTT [44] contains 10K video clips, each of which

has 20 captions. As in [44], we take 6,513 videos for train-

ing, 497 for validation, and 2,990 for testing.

ActivityNet Captions [22] contains 20K videos annotated

with 100K temporally localized sentences. We use the

ground-truth proposals and the corresponding captions in

this dataset to evaluate our method following the split stan-

dard in [22].

4.2. Experimental Setup

Evaluation metrics. We use the metrics of BLEU-4

(B@4) [31], METEOR [9], ROUGE-L [26], and CIDEr

[36] for evaluations by the MSCOCO toolkit [7]. For all

the metrics, higher values indicate better performances.

Feature representations. The input visual cue represen-

tations of the mixture model consist of four different types

of video features, i.e., context, RGB, motion and local fea-

tures. The context feature is extracted from the S2S model

which is applied for tagging the POS. The other three types

of features are extracted by several existing CNNs from

videos. The details of extracting these features can be found

in Section 4.3. The input visual cue representation for each

component in the mixture model can thus be obtained by

combining the four types of video features in different ways.

• Object cue representation as the input to the object-

specific component is calculated by soft-assigning the

local features depending on the context feature at the

current time step via a soft attention operation, since

an object often locates in a local region of a video.

• Motion cue representation as the input to the motion-

specific component is obtained by concatenating the

motion and context features.

• Property cue representation as the input to the

property-specific component is obtained by concate-

nating the RGB and context features. RGB fea-

tures represent the global information within the video

8922



Feature Extractors Methods
MSVD MSR-VTT

B@4 METEOR ROUGE-L CIDEr B@4 METEOR ROUGE-L CIDEr

ResNet-152

HRL [41] - - - - 41.3 28.7 61.7 48.0

PickNet [8] 52.3 33.3 69.6 76.5 41.3 27.7 59.8 44.1

Ours 52.1 33.7 69.8 80.6 41.4 28.9 62.0 48.1

ResNet-152+C3D
SCN [12] 51.1 33.5 - 77.7 - - - -

Ours 52.4 33.7 70.2 81.3 40.7 28.9 61.7 48.3

Incpetion-v4
RecNet [39] 52.3 34.1 69.8 80.3 39.1 26.6 59.3 42.7

Ours 52.5 34.4 70.3 83.0 40.7 28.3 60.4 45.3

IRv2+C3D+YOLO GRU-EVE [1] 47.9 35.0 71.5 78.1 38.3 28.4 60.7 48.1

IRv2+C3D Ours 52.8 36.1 71.8 87.8 42.3 29.7 62.8 49.1

Table 2. Performance evaluation of our method using the same features with the recent state-of-the-art methods on the MSVD and MSR-

VTT datasets.

frames. We apply the RGB features as the property

cue representation because some properties such as the

comparative and cardinal number might be better de-

scribed by referring the global videos.

• Context cue representation as the input of the context-

specific component is comprised of the context feature.

Implementation details. The ConvCap network with the

default parameter settings in [2] is used as the S2S model for

video POS tagging, and the embedding size of each input

word is set to 512. The top-most layer output of the Con-

vCap network without the last attention operation is used as

the context feature to fully represent the semantic relation-

ship between words. In the mixture model, each visual cue-

specific component is constructed by a fully connected layer

with an RReLU activation layer [43] and a softmax classi-

fier. To spatially align the features, the layer normalization

operation [3] is applied before all the concatenations. The

proposed method is implemented with PyTorch [32] on a

Titan X GPU with 12G memory. The RMSprop [15] is em-

ployed to optimize our model, and the learning rate is set to

1e−4.

4.3. Comparison with the State­of­the­Art

To evaluate the effectiveness of joint modeling of syntax

representation learning and visual perception in our method

for video captioning, several recently proposed methods

[41, 8, 12, 39, 1] that are closely related to our method are

employed for comparison. For fair comparison, the same

features with these methods are used as the input of our

method, which are detailed as follows.

• ResNet-152: The RGB and local features are extracted

from the average pooling layer and the res5b layer of

the ResNet-152 [17], respectively. The motion features

are generated by using a temporal attention operation

on the RGB features.

• ResNet-152+C3D: The RGB and local features are the

same with (1). The motion features are extracted from

the pool5 layer of the C3D [35].

• Inception-v4: The RGB and local features are derived

from the average pooling layer and the Reduction-B

layer of the Inception-v4 [34], respectively. The mo-

tion features are calculated by using a temporal atten-

tion operation on the RGB features.

• IRv2+C3D: The RGB features and local are derived

from the average pooling layer and the Reduction-B

layer of the IRv2 [34], respectively. The motion fea-

tures are extracted from the pool5 layer of the C3D.

Concretely, we sample frames of each video at 3fps to ob-

tain the RGB features. The motion features extracted by

the C3D are obtained using 16-frame clips as input with an

8-frame overlap. For local features, we randomly sample

4 RGB frames as the input to the feature extractors for the

attention operation to reduce the computational cost.

Table 2 shows the comparison results on both MSVD and

MSR-VTT datasets. In is evident that our method achieves

satisfactory performances when compared with other meth-

ods using the same features. Note that in comparison with

GRU-EVE [1], for computation simplicity, we do not use

the YOLO model to detect objects for extracting better

representations and our method still achieves significantly

better results than GRU-EVE. This substantially validates

the superiority of our method on simultaneously explor-

ing syntatic structure of sentences and perceiving semantic

primitives for video captioning.

Moreover, we provide the video captioning results of

other state-of-the-art methods for comprehensive compar-

isons on the MSVD and MSR-VTT datasets in Table 3 and

Table 4, respectively. In this experiment, we use IRv2+C3D

as the feature extractors to obtain the input feature represen-

tations. It is obvious that our method consistently performs

better than the state-of-the-art methods on both MSVD and

MSR-VTT datasets for most evaluation metrics. Note that
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Methods B@4 METEOR ROUGE-L CIDEr

SA-LSTM [47] 41.9 29.6 - 51.7

HRNE [29] 46.7 33.9 - -

h-RNN [48] 49.9 32.6 - 65.8

BAE [4] 42.5 32.4 - 63.5

TSA [30] 52.8 33.5 - 74.0

aLSTMs [13] 50.8 33.3 61.1 74.8

SCN [12] 51.1 33.5 - 77.7

M3 [40] 52.8 33.1 - -

RecNet [39] 52.3 34.1 69.8 80.3

PickNet [8] 52.3 33.3 69.6 76.5

GRU-EVE [1] 47.9 35.0 71.5 78.1

Ours 52.8 36.1 71.8 87.8

Table 3. Comparison with the state-of-the-art methods on the

MSVD dataset.

Methods B@4 METEOR ROUGE-L CIDEr

SA-LSTM [47] 37.1 28.4 - -

aLSTMs [13] 38.0 26.1 - 43.2

M3 [40] 38.1 26.6 - -

RecNet [39] 39.1 26.6 59.3 42.7

HRL [41] 41.3 28.7 61.7 48.0

PickNet [8] 41.3 27.7 59.8 44.1

GRU-EVE [1] 38.3 28.4 60.7 48.1

Ours 42.3 29.7 62.8 49.1

Table 4. Comparison with the state-of-the-art methods on the

MSR-VTT dataset.

Methods B@4 METEOR ROUGE-L CIDEr

DCE [22] 1.6 8.9 - 25.1

DVC [25] 1.6 10.3 - 25.2

SDVC [28] 1.3 13.1 - 43.5

Ours 1.9 11.3 22.4 44.2

Table 5. Comparison with the state-of-the-art methods on the Ac-

tivityNet Captions dataset.

the improvement of our method under B@4 is not as re-

markable as other evaluation metrics. The probable reason

is that our method aims at learning the syntactic structure

representation to generate sentences and B@4 is a met-

ric based on lexical rather than syntactic matching [14].

This phenomenon that integrating syntactic information of-

ten fail to improve the BLEU score is also found and ex-

plained in the previous work [5].

We also show comparison results on the validation set

of ActivityNet Captions in Table 5. For fair comparison,

our input features are segment-level C3D features, the same

with the compared methods. The RGB features in our

model are derived from the average pooling of the C3D fea-

tures. We apply self-attention operations on the C3D fea-

tures to calculate the local features. The motion feature of

each proposal is obtained by encoding the C3D features us-

ing LSTM. From Table 5, it is obvious that our method gen-

erally outperforms the state-of-the-art methods on a more

Methods B@4 METEOR ROUGE-L CIDEr

Baseline S2S 50.1 34.3 69.4 77.0

w/o Ls 51.7 34.3 70.7 82.1

w/o Lt 52.5 35.1 71.2 85.6

w/o Lc 51.3 34.7 70.7 83.3

Ours 52.8 36.1 71.8 87.8

Table 6. Results of ablation experiments on the MSVD dataset.

challenging dataset.

4.4. Ablation Studies

To go deeper with each component of our method, we

compare our method with four variations: without POS tag-

ging and mixture model (baseline S2S), without mixture

model (w/o Ls), without POS tagging (w/o Lt) and with-

out the constraint term Lc (w/o Lc).

• Baseline S2S uses the ConvCap [2], which has the

same network architecture with the POS tag genera-

tor in our method except that the last 1D convolutional

layer uses the attention mechanism to directly generate

captions. It has the same word embedder and feature

extractors with our method.

• w/o Ls uses softmax classifier instead of the mixture

model to generate words with the guidance of inferred

POS tags.

• w/o Lt directly uses the mixture model to generate

sentences given the input feature presentations without

video POS tagging.

• w/o Lc removes the constraint term Lc from the loss

function.

These ablation studies are conducted on the MSVD

dataset using the IRv2+C3D as feature extractors. The re-

sults are reported in Table 6. We can have the follow-

ing observations: (1) our method achieves the best result,

which obviously validate the importance of each individ-

ual component in our method; (2) The improvement of our

method compared with “w/o Ls” proves that the proposed

mixture model can effectively solve the word bias problem

and further boost the performance by leveraging the learned

syntactic structures; (3) Our method outperforms “w/o Lt”

which clearly shows that learning syntax representation of

sentences via video POS tagging is helpful to generating

accurate descriptions of videos. (4) The performance drops

when removing the constraint Lc, which validates the im-

portance of encouraging the variety in POS of each sen-

tence.

4.5. Qualitative Analysis

Figure 3 shows some qualitative results of video cap-

tioning from six videos. For each video, three frames are
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GT: 
A man is trimming fat from a roast. 

Ours:
A man is cutting a piece of meat.

Baseline S2S: 
A man cooking his kichen.

w/o Lt: 
A man is slicing meat.

w/o Ls:
A man is putting fat from a piece of 
meat.

w/o Lc: 
A man is spreading the meat.

GT: 
The man jumped into the pool.

Ours:
A person is jumping on a pool.

Baseline S2S: 
A girl is swimming.

w/o Lt: 
A girl is jumping off a wall.

w/o Ls:
A man is playing with water.

w/o Lc: 
A woman is jumping on a pool.

GT: 
A girl ties up her hair.

Ours:
A woman is styling her hair.

Baseline S2S: 
A woman is talking.

w/o Lt: 
A woman is brushing her hair.

w/o Ls:
a woman is talking on a phone.

w/o Lc: 
A woman is brushing her hair.

GT: 
Someone is holding a small toad.

Ours:
Someone is playing with a frog.

Baseline S2S: 
A frog is playing.

w/o Lt: 
The person is playing the 
something.

w/o Ls:
A person is playing with finger.

w/o Lc: 
A person is playing with frog.

GT: 
A woman is coating a pork chop.

Ours:
The lady floured the meat.

Baseline S2S: 
A man cooking his kichen.

w/o Lt: 
A woman is kneading dough.

w/o Ls:
A woman is kneading meat.

w/o Lc: 
A person is cooking.

GT: 
A cat is jumping into a box.

Ours:
A cat is jumping into a box.

Baseline S2S: 
A cat is playing.

w/o Lt: 
A cat is playing with a toy.

w/o Ls:
a cat is playing with a box.

w/o Lc: 
A cat is playing.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Qualitative results for video captioning. There are six videos. For each video, three frames are selected for illustration and six

sentences are shown, including the ground truth (GT) sentence, the sentence generated by our method (Ours), and the other four sentences

generated by four variants of our method in the ablation studies (baseline S2S, w/o Ls, Lt, and Lc).

selected for illustrations. It is interesting to observe that

our method can generate sentences with more accurate se-

mantics and syntax for describing the videos. Compared

with the method w/o Ls in (c), sentences generated by our

method express more precise semantic meanings via effec-

tively solving the word bias problem. (d) indicates that

learning syntax representation of sentences using Lt is in-

dispensable to our method. The effect of the constraint Lc

can be observed from (e) and (f) where sentences generated

by the method without Lc lacks the diversity of syntactic

structures. According to these observations, we conclude

that all the proposed modules in our method contribute to

generating accurate video captions.

5. Conclusion
We have presented a novel approach of jointly learn-

ing syntax representation and translating visual cues for

video captioning. It can simultaneously capture the syn-

tactic structure of sentences via video POS tagging and per-

ceive intrinsic semantic primitives via a new mixture model.

The mixture model can successfully address the word bias

problem inherent in natural language data. An end-to-end

trainable network is built to model the joint probability of

the POS sequence and the lexical words, which is capable

of generating accurate and diverse descriptions of videos.

Extensive experiments on three public datasets demonstrate

that our method outperforms the state-of-the-art methods on

video captioning.
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