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Abstract

Existing deep learning methods of video recog-
nition usually require a large number of labeled
videos for training. But for a new task, videos
are often unlabeled and it is also time-consuming
and labor-intensive to annotate them. Instead of
human annotation, we try to make use of exist-
ing fully labeled images to help recognize those
videos. However, due to the problem of domain
shifts and heterogeneous feature representations,
the performance of classifiers trained on images
may be dramatically degraded for video recogni-
tion tasks. In this paper, we propose a novel
method, called Hierarchical Generative Adversar-
ial Networks (HiGAN), to enhance recognition in
videos (i.e., target domain) by transferring knowl-
edge from images (i.e., source domain). The Hi-
GAN model consists of a low-level conditional
GAN and a high-level conditional GAN. By tak-
ing advantage of these two-level adversarial learn-
ing, our method is capable of learning a domain-
invariant feature representation of source images
and target videos. Comprehensive experiments
on two challenging video recognition datasets (i.e.
UCF101 and HMDB51) demonstrate the effec-
tiveness of the proposed method when compared
with the existing state-of-the-art domain adaptation
methods.

1 Introduction
Video recognition is an active research area because of its
wide applications such as anomalous events detection, ac-
tion retrieval, human behavior analysis and so forth. Thanks
to the success of deep neural networks, the performance of
video recognition has been dramatically improved. However,
training deep video classifiers requires collecting and label-
ing a large number of videos, which is often time-consuming
and labor-intensive. On the other hand, images are much eas-
ier and cheaper to collect and annotate, and there are also
many existing labeled image datasets which can be utilized.
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Furthermore, the computational cost of learning deep classi-
fiers of images is much less than that of videos, so it would
be beneficial a lot to transfer knowledge from source im-
ages to target videos [Duan et al., 2012a; Zhang et al., 2017;
Gan et al., 2016].

However, applying the images trained classifier to video
data directly introduces the domain shift problem, where the
variations in data between source and target significantly de-
grade the recognition performance at test time. To solve this
problem, many domain adaptation methods have been well
explored. A rich line of prior work has focused on learning
shallow features by obtaining a symmetric transformation and
minimizing a distance metric of domain discrepancy [Akaho,
2006; Wang and Mahadevan, 2011; Duan et al., 2012a;
Shi et al., 2010; Duan et al., 2012b; Tsai et al., 2016;
Zhang et al., 2017]. Recently, studies have shown that deep
neural networks can learn more transferable features for do-
main adaptation [Chen et al., 2016; Long et al., 2015a;
Long et al., 2016; Long et al., 2017]. In order to repre-
sent videos more appropriately, spatiotemporal features that
are totally different from image representations with differ-
ent feature dimensions and physical meanings are usually ex-
tracted, which makes the problem worse.

To tackle these issues aforementioned, inspired by recent
advances in generative adversarial networks (GANs) [Good-
fellow et al., 2014], we propose a new approach referred to
as Hierarchical Generative Adversarial Networks (HiGAN)
to transfer knowledge from images to videos by learning
domain-invariant feature representations between them. As
illustrated in Figure 1(a), our approach mainly consists of
two components: a two-level hierarchical conditional GAN
model and a domain adaptation model. The domain adapta-
tion model is adopted to learn a common feature representa-
tion between source images and target video frames, called
image-frame feature. The two-level HiGAN is designed to
have a low-level conditional GAN and a high-level condi-
tional GAN. The low-level conditional GAN is built to con-
nect videos and their corresponding video frames by learn-
ing a mapping function from frame features to video features
in the target domain. The high-level conditional GAN, on
the other hand, is modeled to bridge the gap between source
images and target videos by formulating a mapping function
from video features to image-frame features. Therefore, any
classifiers trained on the source image domain can be effec-
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Figure 1: (a) The framework of the proposed HiGAN. We first train a Domain Adaptation model to learn features Hf . Then, we learn the
low-level condition GAN with features V and F, and calculate the features Vf . After that, we train the high-level condition GAN with features
Vf and Hf , and calculate the features Hv . (b) The training process of the low-level conditional GAN (the high-level conditional GAN has a
similar structure).

tively transferred to the target video domain for recognition,
with the help of the transformable features between them.
In HiGAN, the Correlation Alignment (CORAL) Loss [Sun
and Saenko, 2016] is utilized to minimize the difference in
second-order statistics between the generated features and the
real features.

It is worth emphasizing that, by exploiting the correspon-
dence between a video and its related frames, the projected
video features, which keep the temporal motion of videos, can
be learned with the absence of any paired image-video train-
ing examples in an unsupervised scenario. The experiments
conducted on the UCF101 and HMDB51 datasets demon-
strate that our method can achieve better results than the cur-
rent state-of-the-art domain adaptation methods.

2 Related Work
To harness the information from large-scale image datasets,
several works use images as auxiliary training data for video
recognition [Duan et al., 2012a; Zhang et al., 2017; Gan et
al., 2016]. In [Duan et al., 2012a], they proposed a new
multiple domain adaptation method for event recognition by
leveraging a large number of loosely labeled web images
from different sources. In [Gan et al., 2016], they jointly
exploited source images and source videos for labeling-free
video recognition, and proposed a mutually voting approach
to filter noisy source images and video frames. In [Zhang
et al., 2017], they presented a classifier of image-to-video
adaptation, which borrows the knowledge adapted from im-
ages, and utilizes the heterogeneous features of unlabeled
videos to enhance the performance of action recognition. Dif-
ferent from these methods, our method takes the temporal
information of videos into consideration without extracting
keyframes from videos.

When transferring knowledge between different domains,
the domain shift will cause the classifier learned from the
source domain to perform poorly on the target domain. Nu-
merous domain adaptation methods have been well explored
where the key focus is to learn domain-invariant feature repre-
sentations. A common strategy is to find a mapping function

that would align the source distribution with the target do-
main [Long et al., 2014; Long et al., 2015b; Sun et al., 2016;
Xu et al., 2016; Busto and Gall, 2017; Akaho, 2006; Wang
and Mahadevan, 2011; Shi et al., 2010; Duan et al., 2012b;
Tsai et al., 2016]. Recently, deep neural networks have
been exploited for domain adaptation [Long et al., 2015a;
Long et al., 2016; Chen et al., 2016; Long et al., 2017; Car-
lucci et al., 2017], In [Long et al., 2015a; Long et al., 2016;
Long et al., 2017], Long et al. embedded domain-adaptation
modules into deep networks in which all the layers corre-
sponding to task-specific features are adapted in a layerwise
manner. These methods focus on the image-to-image adap-
tation. In [Chen et al., 2016], the architecture of Transfer
Neural Trees has been presented, which jointly solves the
cross-domain feature adaptation and classification between
heterogeneous domains in a semi-supervised scenario. In
contrast, our method can transfer knowledge between images
and videos in an unsupervised scenario.

Generative Adversarial Networks (GANs) [Goodfellow et
al., 2014] are a class of artificial intelligence algorithms
that are implemented by a system of two competing mod-
els: a generative model and a discriminative model. These
two networks compete with each other in a two-player min-
imax game: the generator is learning to produce as realis-
tic as possible samples at confusing the discriminator, and
the discriminator is learning to get as correct as possible
results at distinguishing generated samples from real data.
GANs have achieved impressive progress in domain adapta-
tion [Bousmalis et al., 2017; Sankaranarayanan et al., 2017].
In [Sankaranarayanan et al., 2017], they proposed an ap-
proach that brings the source and target distributions closer
in a learned joint feature space. In [Bousmalis et al., 2017],
they presented a new approach that learns a transformation
in the pixel space from one domain to another. Different
from these homogeneous domain adaptation methods based
on single GAN, our hierarchical GAN method can effectively
learn a common feature representation shared by heteroge-
neous domains.



3 Hierarchical Generative Adversarial
Networks

3.1 Model
Given a source domain with a set of labeled images and a
target domain with a set of unlabeled videos that share the
same categories, our goal is to learn a common feature rep-
resentation shared by source and target domains, on which
the classifier built from the source domain adapts well to the
target domain. Since a video is composed of a sequence of
frames, we assume that a short video clip has a relationship
with any frames in it, which provides a natural correlation
between frame features and video features. On the other
hand, video frames are a collection of images, which could
be easily adapted to the source image domain. We explore
the image-to-video adaptation by leveraging the relationship
among source images, target video clips and their correspond-
ing frames.

Image-Frame Feature. Let Ds = {xi
s, y

i
s}

ns

i=1 represent
a labeled dataset of ns images from the source domain and
Dt = {xj

t}
nt
j=1 denote an unlabeled dataset of nt videos

from the target domain. We divide each video into several
clips with the same length, building up an unlabeled video
clip domain Dv = {xk

v}
nv

k=1, where nv is the number of
video clips in total. For each clip, a frame is randomly se-
lected and all the selected frames compose an unlabeled video
frame domain Df = {xk

f}
nv

k=1. Since both of Ds and Df

are image collections, we adopt a state-of-the-art deep do-
main adaptation model (i.e. JAN [Long et al., 2017]) to
learn the common feature (called image-frame feature) of
source images and target frames. In the common image-
frame feature space, the source images and the target frames
are represented by Hs = [h1

s,h
2
s, · · · ,hns

s ] ∈ Rns×dh and
Hf = [h1

f ,h
2
f , · · · ,h

nv

f ] ∈ Rnv×dh , respectively, where dh
is the feature dimension.

Frame-to-Video Mapping. For theDv , we extract the C3D
feature [Tran et al., 2015] to describe the target video clips
as V = [v1,v2, · · · ,vnv ] ∈ Rnv×dv , where dv is the fea-
ture dimension. For the Df , we employ the ResNet [He
et al., 2016] to extract deep features of target frames as
F = [f1, f2, · · · , fnv ] ∈ Rnv×df , where df is the feature
dimension. Generally speaking, frame features and video
features are from two heterogeneous feature spaces, which
means dv 6= df . Considering the correspondence between a
video frame and its related video clip, we get a collection of
nv instances of video-frame pairs, denoted as P = {pk}nv

k=1

with pk = (vk, fk). We aim at learning a mapping function
from video frames to their related video clips. Specifically,
the frame features F are projected to video clip features V
as V f = Gl(F ; θGl

), where Gl(·; θGl
) is the mapping func-

tion and V f = [v1
f ,v

2
f , · · · ,v

nv

f ] ∈ Rnv×dv indicates the
generated video feature from F .

Video-to-Image Mapping. For each frame xk
f , it can be

represented by two different features vk
f ∈ V f and hk

f ∈

Hf , thus we have a collection of nv two heterogeneous fea-
tures pairs, expressed as Q = {qk}nv

k=1 with qk = (hk
f ,v

k
f ).

Given Q, a projection H
′

f = Gh(V f ; θGh
) from V f to

Hf can be learned. Here, Gh(·; θGh
) is the mapping func-

tion and H
′

f is the generated image-frame feature from V f .
Note that Hf and Hs share the same feature space learned
by JAN model. In fact, V f and V also come from the
same video feature space. Consequently, Gh(·; θGh

) can
be actually considered as the projection from videos to im-
ages, and the video clip features V can be projected to the
image-frame space as Hv = Gh(V ; θGh

), where Hv =
[h1

v,h
2
v, · · · ,hk

v ] ∈ Rnv×dh indicates the generated image-
frame feature from V . Followed by averaging the clip fea-
tures of each video, we obtain the final features for videos,
denoted as Ht = [h1

t ,h
2
t , · · · ,h

nt
t ] ∈ Rnt×dh , which can be

directly compared against source image features Hs.
Motivated by the success of GANs in multiple fields, we

propose a HiGAN model where the low-level GAN and the
high-level GAN are designed to learn the mapping functions
Gl and Gh, respectively. Our whole objective includes two
terms. One is the adversarial loss [Goodfellow et al., 2014]
for matching the distribution of generated features to the data
distribution in the original domain. The other is the CORAL
loss [Sun and Saenko, 2016] for minimizing the difference in
second-order statistics between the synthesized features and
the original features.

3.2 Loss
Adversarial Loss. For the mapping function Gl associated
with the discriminator Dl, we denote the data distribution as
V ∼ Pdata(V ) and F ∼ Pdata(F ), then the objective is
formulated as:
LGAN (Dl, Gl,F ,V ) = EV ∼Pdata(V )[logDl(V |F )]

+ EF∼Pdata(F )[log(1−D(Gl(F )|F ))],
(1)

where Gl attempts to generate video features Gl(F ) that re-
semble the video features from V , while Dl tries to distin-
guish between generated features Gl(F ), and ground-truth
features V . In other words, Gl aims at minimizing this ob-
jective against an adversary Dl that tries to maximize it, for-
mulated by minGl

maxDl
LGAN (Dl, Gl,F ,V ). We intro-

duce a similar adversarial loss for Gh and Dh , given by
minGh

maxDh
LGAN (Dh, Gh,V f ,Hf ).

CORAL Loss. It has been proven that the GAN objective
combined with another loss could produce significant good
results [Zhu et al., 2017]. In our method, we introduce the
CORAL loss [Sun and Saenko, 2016] to minimize the differ-
ence in second-order statistics between the generated features
and the real features. The CORAL Loss is simple, effective
and can be easily integrated into a deep learning architecture.

For the generator Gl associated with Dl, V is the real fea-
tures and V f is the synthesized features. Suppose Ev and
Evf

denote the feature covariance matrices. The CORAL
loss as the distance between the second-order statistics (co-
variance) of V and V f is expressed as follows:

LCORAL(V ,V f ) =
1

4d2v
‖EV −EVf

‖2F , (2)



where ‖ ·‖2F denotes the squared matrix Frobenius norm. The
covariance matrices EV and EVf

are calculated by

EV =
1

nv − 1
(V TV − 1

nv
(1TV )T(1TV )), (3)

EVf
=

1

nv − 1
(V T

f V f −
1

nv
(1TV f )

T(1TV f )), (4)

where 1 is a column vector with all elements equal to 1.
For the generator Gh associated with Dh, we introduce a

similar CORAL loss as well:

LCORAL(Hf ,H
′

f ) =
1

4d2h
‖EHf

−EH
′
f
‖2F . (5)

3.3 Objective
In order to prevent the learned parameters from overfitting,
we introduce the regularization term:

Lreg(Dl, Gl) =

LD∑
lD=1

‖W lD
Dl
‖F +

LG∑
lG=1

‖W lG
Gl
‖F , (6)

Lreg(Dh, Gh) =

LD∑
lD=1

‖W lD
Dh
‖F +

LG∑
lG=1

‖W lG
Gh
‖F , (7)

where W lD
Dl

, W lG
Gl

, W lD
Dh

and W lG
Gh

represent the layer-wise
parameters of networks. LD and LG denote layer numbers of
discriminator and generator, respectively. Based above, the
whole objective becomes

L(Dl, Gl) = λ1LcGAN (Dl, Gl,F ,V )

+ λ2LCORAL(V ,V f )

+ Lreg(Dl, Gl),

(8)

L(Dh, Gh) = λ3LcGAN (Dh, Gh,V f ,Hf )

+ λ4LCORAL(Hf ,H
′

f )

+ Lreg(Dh, Gh),

(9)

where λ1, λ2, λ3 and λ4 are weight parameters that control
the relative importance of adversarial loss and CORAL loss,
respectively.

3.4 Algorithm
To learn the optimal feature representations, the generator G
and the discriminator D compete with each other in a two-
player minimax game, jointly minimizing the adversarial loss
in Eq. (1) and the CORAL loss in Eq. (2). We aim to solve:

D∗
l , G

∗
l = argmin

Gl

max
Dl

L(Dl, Gl), (10)

D∗
h, G

∗
h = argmin

Gh

max
Dh

L(Dh, Gh). (11)

The algorithm of HiGAN is summarized in Algorithm 1.

Algorithm 1: Hierarchical Generative Adversarial Net-
works

Input: The source image domain Ds, the target video domain
Dt, the video clip domain Dv , the video frame domain
Df , the deep features V of Dv , the deep features F of
Df

Output: The deep features Hs of Ds and Ht of Dt

1 Train the JAN model with Ds and Df to learn features Hs and
Hf of Ds and Df , respectively.

2 Learn the mapping function Gl(·; θGl) with deep features F
and V via Eq. (8), and calculate the new deep feature Vf of
Df .

3 Learn the mapping function Gh(·; θGh) with deep features V f

and Hf by Eq. (9), and calculate the new deep feature Hv of
Dv .

4 Average the clip features Hv of each video to obtain the
features Ht of Dt.

5 Return Hs and Ht.

4 Experiments

4.1 Datasets

To evaluate the performance of our method, we conduct the
experiments on two complex video datasets, i.e., UCF101
[Soomro et al., 2012] and HMDB51 [Yao et al., 2011]. For
the UCF101 as the target video domain, the source images
come from the Stanford40 dataset [Yao et al., 2011]. For the
HMDB51 as the target video domain, the source image do-
main consists of Standford40 dataset and HII dataset [Tanisik
et al., 2016], denoted by EADs dataset.

Stanford40 and UCF101 (S→U): The UCF101 is a dataset
of action videos collected from YouTube with 101 action cat-
egories. The Stanford40 dataset include diverse action im-
ages with 40 action categories. We choose 12 common cate-
gories between these two datasets.

EADs and HMDB51 (E→H): The HMDB51 dataset has 51
classes, containing 6766 video sequences. The EADs dataset
consists of Stanford40 and HII datasets. The HII dataset has
10 action images and each class contains at least 150 images,
forming a total of 1972 images. The 13 shared categories
between the EDAs and the HMDB51 datasets are adopted in
our experiment.

4.2 Experiment Setup

We split each target video into 16-frame clips without over-
lap, and all the clips from all the target videos construct the
video-clip domain. The deep feature of each video clip is
the 512D feature vector from the pool5 layer of 3D CoveNets
[Tran et al., 2015] which are trained on a large-scale video
dataset. For each video clip, we randomly sample one frame
and all the frames from all the video clips compose the video-
frame domain. The deep feature of frames is the 2048D vec-
tor extracted from the pool5 layer of ResNet [He et al., 2016].
We utilize the JAN [Long et al., 2017] method based on the
ResNet to get the domain-invariant image-frame features be-
tween source images and target video frames from the pool5
layer of JAN with the dimension of 2048D.



Implementation details. To model the two generators in
HiGAN, we deploy four-layered feed-forward neural net-
works activated by relu function, (i.e., 2048 → 1024 →
1024 → 1024 → 512 for Gl(f ; θGl

) and 512 → 1024 →
1024 → 2048 → 2048 for Gh(vf ; θGh

)). In terms of two
discriminators, we both utilize three fully connected layers (
2560→ 1280→ 640→ 1) activated by relu function, except
for the last layer.

In practice, we replace the negative log likelihood objec-
tive by a least square loss [Mao et al., 2016], which performs
more stably during training and generates higher quality re-
sults.

Since the adversarial losses and the CORAL losses have
different orders of magnitude according to the experiments,
and the low-level conditional GAN and the high-level one
have very similar network structures, we set λ2 = λ4 = 100,
λ1 = λ3 = 1 in Eq. (8) and Eq. (9) for all the experiments,
to somehow balance the two types of losses. We employ the
Adam solver [Kingma and Ba, 2014] with a batch size of 64.
All the networks were trained from scratch with the learn-
ing rate of 0.00002 for the low-level conditional GAN and
0.000008 for high-level conditional GAN.

Related methods. We evaluate the effectiveness of our ap-
proach by investigating whether our generated features of
source images and target videos are more transferable than
other domain adaptation methods, that is, whether the recog-
nition accuracy on the target videos could be improved.
Specifically, the compared methods are: 1) MKL [Xu et al.,
2013]; TJM [Long et al., 2014]; TKL [Long et al., 2015b];
CORAL [Sun et al., 2016]; LRSR [Xu et al., 2016]; ATI
[Busto and Gall, 2017]; KCCA [Akaho, 2006]; HEMAP [Shi
et al., 2010]; DAMA [Wang and Mahadevan, 2011]; HFA
[Duan et al., 2012b]; CDLS [Tsai et al., 2016], which are tra-
ditional shallow domain adaptation methods, and 2) ResNet
[He et al., 2016]; DAN [Long et al., 2015a]; RTN [Long et
al., 2016]; JAN [Long et al., 2017]; DAL [Carlucci et al.,
2017], which are deep domain adaptation methods. The MKL
is considered as a traditional baseline method which directly
uses source classifiers in the target domain. Similarly, the
ResNet is taken as a deep baseline method. As fair compar-
ison with identical evaluation setting, the image-frame (i.e.,
JAN) features of source images are taken as source features
in the traditional shallow domain adaptation methods. For all
the methods, we use the accuracy for performance evaluation.

Note that MKL, TJM, TKL, CORAL, LRSR and ATI can
only handle the homogeneous domain adaptation problem,
when the data from the source and target domains are with
the same type of feature. Therefore, for these methods, each
target video is represented by the mean of the image-frame
features of all the frames.

For the traditional heterogeneous domain adaptation meth-
ods of KCCA, HEMAP, DAMA, HFA and CDLS, the C3D
feature is adopted to describe the target videos. Considering
that all these methods require the labeled training data in the
target domain, we randomly choose three videos per class as
the labeled target data and take the rest videos as the test data.
For each dataset, we repeat the sampling for 5 times and re-

Method S→U E→H
MKL [Xu et al., 2013] 0.889 0.392

TJM [Long et al., 2014] 0.898 0.314
TKL [Long et al., 2015b] 0.902 0.391
CORAL [Sun et al., 2016] 0.904 0.398

LRSR [Xu et al., 2016] 0.893 0.380
ATI [Busto and Gall, 2017] 0.905 0.330
HiGAN (no labeled video) 0.954 0.446

KCCA [Akaho, 2006] 0.853 0.366
HEMAP [Shi et al., 2010] 0.432 0.213

DAMA [Wang and Mahadevan, 2011] 0.860 0.438
HFA [Duan et al., 2012b] 0.885 0.459
CDLS [Tsai et al., 2016] 0.885 0.435

HiGAN (three labeled videos) 0.967 0.526

Table 1: Comparison between our method and the traditional shal-
low domain adaptation methods.

Method S→U E→H
ResNet [He et al., 2016] 0.814 0.385

DAN [Long et al., 2015a] 0.842 0.395
RTN [Long et al., 2016] 0.838 0.402
JAN [Long et al., 2017] 0.914 0.409

DAL [Carlucci et al., 2017] 0.826 0.426
HiGAN 0.954 0.446

Table 2: Comparison between our method and the deep domain
adaptation methods.

port the average results.
Regarding the deep methods of ResNet, DAN, RTN, JAN,

DAL, since they only take images as input, the source images
and target video frames are utilized to train the networks. The
output scores (from the last fc layer) of all the frames are fur-
ther averaged to determine the class label of the video. All the
deep methods are implemented based on the Caffe framework
[Jia et al., 2014] and fine-tuned from Caffe-provided mod-
els of ResNet, which are pre-trained on the ImageNet 2012
dataset. We fine-tune all convolutional and pooling layers and
train the classifier layer via back propagation.

4.3 Results
Comparison with existing domain adaptation methods.
Table 1 and Table 2 show the recognition accuracies of tradi-
tional shallow domain adaptation methods and deep domain
adaptation methods, respectively. From them, we can notice
that our method achieves the best performance compared with
other state-of-the-art methods for both datasets, which explic-
itly demonstrates the effectiveness of transferring knowledge
from images to videos for video recognition. The more de-
tailed observations are as follows.

(1) When videos are represented by C3D features which
are different from source image features, the traditional het-
erogeneous methods substantially perform worse than the tra-
ditional homogeneous methods on the S→U dataset, even
though they have some labeled videos in the target domain.
This shows that it is a quite challenging task to conduct do-
main adaptation between images and videos when they are re-
spectively represented by different features. Compared with



Method S→U E→H
HiGAN CORAL 0.726 0.335

HiGAN Adversarial 0.921 0.439
HiGAN 0.954 0.446

Table 3: Ablation study: classification performance of S→U and
E→H for different losses

them, our proposed HiGAN can achieve better performance
owing to the strengths of taking video frames as a bridge to
obtain the common feature shared by heterogeneous images
and videos.

(2) When there are no labeled data in the target domain,
both traditional methods and deep methods are better than
the baseline methods (i.e., MKL and ResNet) on the S→U
dataset, which indicates that these adaptation methods can
improve action recognition performance, but the improve-
ment is not significant. On the E→H dataset, traditional
methods slightly underperform the baseline MKL. A possi-
ble explanation is that the huge difference between source
images and target video frames on the E→H dataset leads to
the negative transfer. On the other hand, deep transfer learn-
ing methods are better than the baseline ResNet, which veri-
fies that deep networks are better at addressing negative trans-
fer issue. Compared with them, our proposed HiGAN gains
performance improvement on both datasets, which demon-
strates that our method can attain respectable performances
even though there is a huge difference between source images
and target videos.

Analysis of the loss function. In Table 3, we assess the in-
dividual effect of the advesarial loss and the CORAL loss
in HiGAN, with respect to the recognition accuracies in
two datasets. We develop two variants of our HiGAN:
one with the adversarial loss but without the CORAL loss,
the other with the CORAL loss but without the adversarial
loss. The two variants are referred to as HiGAN Adversarial
and HiGAN CORAL, respectively. Removing the adversar-
ial loss substantially degrades results, as does removing the
CORAL loss. We therefore conclude that both terms are crit-
ical to our results.

Effectiveness of the HiGAN features for traditional do-
main adaptation. To validate the performance improve-
ment of the proposed HiGAN features for video recognition,
we compare it with the original features (i.e., JAN and C3D)
used in the traditional shallow domain adaptation methods.
Additional experiments are conducted with different features.
Figure 2 (a) and (b) demonstrate the accuracy improvements
on the S→U and E→H datasets, respectively. We can ob-
serve that, the recognition result could be improved with our
proposed HiGAN features for both datasets.

Effectiveness of exploring images by HiGAN for video
recognition. We also explore whether it is beneficial to
transfer knowledge from images for video recognition by
comparing our HiGAN features and the C3D features on the
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(b) E→H

Figure 2: The accuracy improvement in the traditional shallow do-
main adaptation methods with our HiGAN features on both the
S→U and E→H datasets. The blue bars show the accuracy of tradi-
tional methods trained on JAN and C3D features. The red bars show
the absolute increase in accuracy of the traditional methods trained
using our HiGAN features.

Method UCF101 HMDB51
C3D [Tran et al., 2015] 0.940 0.657

HiGAN 0.980 0.740

Table 4: Comparison between our method and C3D on the video
recognition.

UCF101 and the HMDB51 datasets with the chosen cate-
gories. The experiments are separately done on the three
train/test splits, and the result is averaged across three test
splits. From table 4, it is interesting to notice that with the
same training samples, our method can significantly improve
the video recognition accuracy on both datasets, which vali-
dates the benefits of exploring related images for video recog-
nition.

5 Conclusion
We have proposed a new Hierarchical Generative Adversar-
ial Networks approach to transfer knowledge from images to
videos. By taking advantage of these two-level adversarial
learning with the CORAL loss, our method is capable of
learning a domain-invariant feature representation between
source images and target videos. Thus the image classifiers
trained on the domain-invariant features can be effectively
adapted to videos. We conduct experiments on two datasets
and the results validate the effectiveness of our method.

The future work includes exploiting large-scale Web im-
ages for video recognition which will further improve the
recognition accuracy. We also plan to extend our method to
multiple source domain adaptation.
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