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Content-Attention Representation by Factorized
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Abstract—During action recognition in videos, irrelevant
motions in the background can greatly degrade the performance of
recognizing specific actions with which we actually concern ourself
here. In this paper, a novel deep neural network, called factorized
action-scene network (FASNet), is proposed to encode and fuse the
most relevant and informative semantic cues for action recognition.
Specifically, we decompose the FASNet into two components. One
is a newly designed encoding network, named content attention
network (CANet), which encodes local spatial–temporal features
to learn the action representations with good robustness to the
noise of irrelevant motions. The other is a fusion network, which
integrates the pretrained CANet to fuse the encoded spatial–
temporal features with contextual scene feature extracted from
the same video, for learning more descriptive and discriminative
action representations. Moreover, different from the existing deep
learning based tasks for generic action recognition, which applies
softmax loss function as the training guidance, we formulate two
loss functions for guiding the proposed model to accomplish more
specific action recognition tasks, i.e., the multilabel correlation loss
for multilabel action recognition and the triplet loss for complex
event detection. Extensive experiments on the Hollywood2 dataset
and the TRECVID MEDTest 14 dataset show that our method
achieves superior performance compared with the state-of-the-art
methods.

Index Terms—Deep neural network, multi-label action
recognition, complex event detection.

I. INTRODUCTION

V IDEO based action recognition is an active research area,
whereas recognizing actions in realistic unconstrained

videos is still quite challenging due to the factors of view-
point variations and background clutters. As for the cluttered
background, different videos may demonstrate different visual
appearances of background scenes, and the background in one
video may contain irrelevant motions other than the actions
which we are actually interested in. Most of the existing action
recognition methods lessen the impact of various visual appear-
ances by utilizing spatio-temporal proximity information among
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features which are extracted from space-time interest points
[1]–[3] or along motion trajectories [4], [5]. However, without
the guidance of high-level semantic information, action repre-
sentations extracted by these methods do not have the capability
of selectively expressing the most relevant action information
in a video. Taking a video captured in a street for example, there
are many people walking in the street and a man getting off a car.
It is obvious that a person is more likely to pay more attention
to the “getting off a car” than the “walking”, but machines may
classify the actions in this video as the “walking”.

To tackle the problem of the cluttered background for action
recognition, some methods [5], [6] use the techniques of object
tracking and detection before feature extraction and other meth-
ods [7]–[9] jointly recognize and localize actions in videos.
But it is time-consuming, labor-intensive, and error-prone to
annotate bounding boxes of persons for training. Recently, sev-
eral Convolutional Neural Network (CNN) based methods are
proposed to learn the most relevant representations for spec-
ified task theoretically trained in an end-to-end manner, e.g.,
3D CNNs [10], [11], Multi-resolution CNNs [12], and Long-
term Recurrent Convolutional Networks (LRCN) [13]. These
methods have achieved good performances of learning relevant
representations on specific action datasets. However, they do not
have strong generalization ability to get good performances on
other datasets which share different kinds of action categories
with their training datasets because these complex deep models
are liable to be over-fitting without sufficient available labeled
datasets to fine-tune these models.

In this paper, we propose a Factorized Action-Scene Network
(FASNet) to eliminate irrelevant background motion informa-
tion without the cumbersome action detection preprocessing or
extensive labeled training data. The FASNet first factorizes ac-
tion videos into action and scene components by extracting the
corresponding local spatial-temporal features and static scene
features, respectively. The spatial-temporal features are then en-
coded by a newly proposed Content Attention Network (CANet)
which is a component of the FASNet, to suppress the influence
of irrelevant background action for more descriptive and dis-
criminate representations of relevant actions. The encoded rele-
vant action representations and the useful context scene features
are finally fused by the concatenate layer to obtain the action
representation.

Accordingly, the training procedure of the FASNet involves
two stages: (i) training the CANet, and (ii) fine-tuning the whole
FASNet initialized with the pre-trained CANet. The first stage
aims to make the CANet capable of automatically selecting the
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most informative and relevant local spatial-temporal features to
precisely describe relevant actions. A good relevant action video
representation is expected to be close to the representation of
a clean and simple action video. A clean action video is de-
fined as a video only containing a single action with relatively
clean background. The CANet which encodes the local spatial-
temporal features based on super vector scenario with the atten-
tion mechanism [15] is thus trained using clean action videos as
the ground truth. Note that the CANet needs to be pre-trained
only once via the clean video dataset. For a new action recogni-
tion task, we just integrate the CANet into the FASNet regardless
of the aforementioned training guidance by the clean videos.

The second stage is to develop a network that harnesses the
information of scenes and actions by combining them for action
recognition. The contextual scene can improve the performance
of action recognition in realistic videos because many realistic
actions usually happen in some particular scenes. For example,
the action of “DriveCar” often happens in an outdoor scenario.
Since it is unnecessary to process scene information in each
frame of a video, we just extract features of the key frames as the
static scene features. After pooling and a nonlinear transforma-
tion, the static scene features are fused with the output relevant
action features from the CANet by the concatenate layer.

To enhance the adaptiveness of the FASNet on some specific
action recognition tasks, we employ two loss functions. One is
the multi-label correlation loss which is designed for multi-label
action recognition, and the other is the triplet loss for event de-
tection. In the case of multi-label action recognition, a video
could be classified as two or more action categories, e.g., people
might kiss while hugging. With respect to the symbiosis among
different action categories, the multi-label correlation loss is
used to measure the probability of the co-occurrence of action
categories. In the case of complex event detection, where the
training set contains a vast amount of negative video exemplars
and a small amount of positive exemplars, the widely used soft-
max loss only considers the separable ability of features while
omitting the discriminative power of features aside resulting in
the poor generalization of the model. Motivated by the success
of the triplet loss in retrieval tasks [16]–[19], we apply the triplet
loss to event detection to train the model by maximizing the rel-
ative distance of inter-class and intra-class features through a
set of triplets.

The main contributions of this paper are three folds:
1) We propose a novel deep neural network, FASNet, to en-

code and fuse the most relevant motion information and
scene information for action recognition. To accomplish
this goal, a trainable encoding network, CANet, is pro-
posed to automatically learn the most relevant motion
information from action videos.

2) We formulate two new loss functions for the training of
the FASNet. The multi-label correlation loss is designed
for the multi-label action recognition task and the triplet
loss function is introduced for complex event detection.

3) Experiments on both Hollywood2 dataset and MEDTest
14 dataset show the superior performance of the proposed
FASNet compared with the state-of-the-art methods.

II. RELATED WORK

In this section, we discuss the previous works related to our
method: covering the deep encoding networks and the fusion of
action and scene for action recognition.

Deep encoding networks: Recently, deep encoding networks
are prevalent for encoding local features of videos or images.
The Recurrent Neural Network (RNN) based methods [20], [13]
capture contextual information from video sequences. But the
sheer amount of trainable parameters of RNNs makes it easy to
be overfitting without large scale training data. Hierarchical rank
pooling [21] stacks and rank-pools non-linear feature functions
to encode the temporal information of video sequences. These
approaches are only suitable for encoding temporal signals. Su-
per vector based encoding methods [22]–[24] which map the
local features of images or videos to form high dimensional rep-
resentations have achieved good performances in several tasks.
The most related work to our method is the NetVLAD encod-
ing method [25] which proposes a super vector based encoding
model with trainable parameters for place recognition. The main
difference between the NetVLAD and the proposed CANet is
that the CANet is more adaptive, content-aware and robust to
the irrelevant content by addressing the attention mechanism
and using clean videos as the guidance for training. Besides, the
codewords of the CANet need not to be trained, thus reduces
the computation cost.

Fusion of action and scene: Over the past years, combining
multi-modal information, namely action and scene, has been
successfully employed in action recognition [26]. Ikizler-Cinbis
et al. [27] used a multiple instance learning framework, which
integrates object, scene and action features of videos for ac-
tion recognition. They employed Gist features [28] to describe
the contextual scene in a video. Since the Gist features cannot
express the information of objects which actually are parts of
scenes, they additionally detected objects and extracted HOG
features [29] from the objects. Other hand-crafted feature based
works [30], [31] combine object information of scenes with ac-
tion information for action recognition. These methods may lose
a lot of useful information of scenes. The recent deep learning
based methods overcome the limitation of global representa-
tion ability of traditional hand-crafted features on scene infor-
mation. The two-stream CNNs based methods [32], [33] ex-
ploit two separated 2D CNNs, namely spatial net and temporal
net, to capture motion and scene information from action videos.
They pre-compute the optical flow of videos as the input of the
temporal net to obtain motion information. The optical flow is
generated before training, which might be not compatible with
the final recognition task, and its generation procedure has high
computational and storage complexities. Shi et al. [34] applied a
three-stream CNN to capture static spatial, short-term temporal
and long-term temporal information of videos for action recog-
nition. To extract long-term motion information from videos, the
Sequential Trajectory Texture images are calculated by comput-
ing the dense trajectories before training the three-stream CNN.
Feichtenhofer et al. [35] added a 3D CNN to the two-stream
CNNs, yet it is hard to train a general 3D CNN due to the
insufficient large-scale labeled action video datasets. Although
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Fig. 1. Schema of the proposed network. The FASNet factorizes action videos into action and scene components by extracting the corresponding local spatial-
temporal features and static scene features with the C3D model [11] and the deep residual network (ResNet) [14], respectively. The CANet is pre-trained and
added as a component of the FASNet. The loss function is designed according to different action recognition tasks.

the C3D model [11] pre-trained on sports-1M dataset shows
good performance on recognizing small scale datasets, e.g., the
UCF101 [36] and the HMDB51 [37], where most actions are
sports-related, it is impractical if we fine-tune a pre-trained
CNN using a small scale dataset (e.g., the Hollywood2 [38])
which shares different domains with the pre-training dataset
(e.g., Sports-1M). Different from these methods, our model is
more adaptive by extracting local features using pre-trained 3D
and 2D CNNs from raw frames of videos, and utilizes the lo-
cal features as input to train a relatively simple network for a
specific task.

III. OUR APPROACH

In this section, we first adopt two existing CNNs to respec-
tively extract local spatial-temporal features and static scene
features from action videos. Then, we describe the proposed
CANet to discover the most relevant cues for action description.
Finally, we present the FASNet network with different novel
loss functions for different action recognition tasks.

A. Feature Extraction

Action-related feature extraction: Features extracted from the
bottom layers of the C3D deep model [11] are compact and full
of spatial-temporal motion information, which is compatible
with the Content Attention Network (CANet). Thus we uti-
lize them as the input of the CANet. The C3D conducts all
convolutions with 3 × 3 × 3 3D convolutional kernels to cap-
ture spatial and temporal information simultaneously. Here is
the architecture of C3D: Conv1a(64) - Pool1 - Conv2a(128) -
Pool2 - Conv3a(256) - Conv3b(256) - Pool3 - Conv4a(512) -
Conv4b(512) - Pool4 - Conv5a(512) - Conv5b(512) - Pool5 -
fc6(4096) - fc7(4096) - softmax, where Conv1a(64) denotes the
convolutional layer with 64 filters and fc6(4096) is the fully con-
nected layer with 4096 nodes. The Pool1 to Pool5 denote the
3D pooling layers, and all the pooling kernels of Pool2 to Pool5
are of size 2 × 2 × 2, except for the Pool1 whose kernel size is
1 × 2 × 2. The input of C3D is a video segment with the size of

171(width) × 128(height) × 16(number of frames). Here,
we use features of the Pool5 layer for encoding due to their
redundancy of local spatial and temporal information. We do
not use the features extracted from the top-most fully connected
layer. Since the C3D model is pre-trained with a large amount
of sport-related action videos from the Sports-1M dataset, they
are more likely to represent sport-related action videos. Com-
pared to the top-most fully connected layers, the Pool5 layer
characterizes low-level appearance and motion information of
actions, and the features extracted from the Pool5 layer are thus
easy to be transferred to specific tasks.

We concatenate values at the same spatial location of dif-
ferent feature maps as the spatial-temporal representation of
a video block. As shown in Fig. 3, after Pool5, we have 512
feature maps, and these features can be described by a 4 × 4
grid of 512-d features at strided regions of a 16-frame video
segment. Each 512-d vector captures rich spatial and temporal
information regarding to the corresponding region of the video
segment.

Scene-related feature extraction: To represent the context
scene information in videos, we use the 152-layer deep residual
net (ResNet)[14] to extract features of key frames from videos.
The 152-layer ResNet is trained by a large-scale image dataset,
i.e., the ImageNet [39], and won the 1st place on ILSVRC 2015
classification task, which shows its strong generalization abil-
ity. The architecture of the ResNet is a very deep plain CNN
with shortcut connections inserting into it. The structure of the
plain CNN is similar to the VGG nets [40] and has even lower
complexity, with 3 × 3 convolutional kernels and one fully con-
nected layer. The shortcut connections perform identity mapping
for fast converging to a better solution.

Since the ResNet trained on the ImageNet is generalized to
describe static images, we use the 1000-d features extracted
from its top-most layer to represent complex scene information
of videos. The scene in an action video varies slightly, therefore
no more than 3 key frames are selected from each video by
finding out the top-3 frames in the video with maximum values
w.r.t. frame-wise Euclidean distances.
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Fig. 2. The architecture of our CANet. FC denotes the fully connected layer. Inside of each bracket is the number of nodes of the corresponding layer.

Fig. 3. Demonstration of extracting local spatial-temporal features from a video clip.

B. CANet

We train the CANet to map the local spatial-temporal features
to the space of actions in clean videos and remove the irrelevant
actions by the encoding process. Fig. 2 shows the architecture of
the CANet. Taking the inspiration from the attention mechanism
of Neural Turing Machine [15], the bottom layers of the CANet
act as a selection controller to express meaningful action infor-
mation and suppress irrelevant local spatial-temporal features.
The fully connected layer with softmax activation is to imple-
ment the soft assignment that enables features to vote for multi-
ple codewords and maintain more information during encoding.
The soft assignment is learned by end-to-end training instead of
the traditional distance measurements, so it is more reliable to
achieve the global assignment. Then the features are encoded by
the encoding layer in a VLAD-all [41] manner, while the code-
words are generated from the local spatial-temporal features
of clean action videos. Complex action videos are thus able to
be represented by these clean videos to eliminate the irrelevant
motion information contained in the complex videos. The re-
gression loss is added as the auxiliary output, where the ground
truth is the VLAD-all encoded features of clean videos. We
first collect the clean videos covering 55 action categories for
generalizing cluster centers of clean action videos from mul-
tiple public available video datasets including the KTH [42],
Weizmann [43], UCF101 [36], HMDB51 [37], and the video
dataset taken by us. Then, we use the C3D to obtain the local
spatial-temporal features of these clean videos. Next, we clus-
ter the local spatial-temporal features to generate 64 centers by
using k-means clustering. As shown in Fig. 4, the ground-truth

Fig. 4. Example of ground truth features of regression loss generation. Local
spatial-temporal features of the same action category are encoded using VLAD-
all to a vector as the ground truth of this action category.

features of the regression loss are obtained by encoding the local
spatial-temporal features of clean videos with the VLAD-all. To
learn the CANet network, we use the clean action videos and
the complex videos of the 55 categories in the UCF101 and the
HMDB51 datasets as training data. For each training video, we
segment 4 non-overlap 16-frame video clips to get totally 64
local spatial-temporal features.

Assume that the input local spatial-temporal features are
represented by X = [x1 ,x2 , ...,xN ] ∈ RH×N , where xn =
[x1

n , x2
n , ..., xH

n ]T is a H-dimensional descriptor, and N is
the number of descriptors in a video. The selection weights
α = [α1 , α2 , ..., αN ] are learned from the input features X to
generate the selected local features, x′

n = αnxn .
By using a linear transformation of X with shared weights

to reduce the feature dimension from H to 1, we leverage Rec-
tified Linear Units (ReLU) to eliminate the irrelevant motion
information for describing videos. Obviously, if we directly use
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the output of the ReLU as selected weights, the gradient will
be linear w.r.t. the parameters. In order to prevent the gradi-
ent explosion problem, we use softmax activation to normalize
the output of the ReLU. To ensure the values of the selected
features are consistent at the order of magnitude with the code-
words, we multiply the output of softmax with N . Accordingly,
the selection weights are calculated.

Let D = [d1 ,d2 , ...,dK ] ∈ RH×K denote K codewords,
then the VLAD-all of the nth descriptor is calculated by

vi =
[
ω1

n (x′
n − d1)T ; . . . ;ωK

n (x′
n − dK )T]

, (1)

where

ωk
n =

exp(wT
k x′

n + bk )
∑K

k ′=1 exp(wT
k ′x′

n + b′k ′)
(2)

is the soft assignment weight with wk and bk denoting the pa-
rameters of the third fully connected layer. Note that, we set
the soft assignment weights trainable instead of fixed weights
based on calculated distances, because the feature space is
indeterminate, and it is hard to choose an appropriate type
of distance. Then the encoded features are pooled together
by v =

∑N
n=1 vn , and further normalized by power and l2

normalization:

fpower(vi) = sign(vi)|vi | 1
2 , (3)

ν = fl2(fpower(v)) =
fpower(v)

‖fpower(v)‖2
, (4)

where vi is the ith dimension of the encoded feature v. Since
it is hard to take the derivative of the function sign(·), we use
tanh(·) as an approximation in the implementation.

Finally, two loss functions are added for learning video rep-
resentations which are discriminative and robust to the noise of
irrelevant actions. The main loss function is a hinge loss with
l2-norm of weights of the last fully connected layer, given by

Lmain =

M∑

m

(
C∑

c

max (0, 1 − yc
m (ucνm + pc)) + θ‖uc‖2

)

, (5)

where uc and pc denote the parameters of the last fully connected
layer, and yc

m ∈ {+1,−1} is the label of the mth feature of
the cth class. M and C are the numbers of features and action
categories, respectively. The auxiliary loss, which is a regression
function calculating the cosine proximity of the feature and the
ground truth feature ν′, is given by

Laux = −
M∑

m

νT
m ν ′

m . (6)

Finally, the loss LC AN et of the CANet is formulated as

LC AN et = Lmain + λLaux . (7)

C. FASNet

In the previous subsection, we have designed the CANet
which learns to encode meaningful action information. In this
subsection, we exploit a fusion network to combine action and

scene information with different loss functions for different spe-
cific action recognition tasks. Here, we do not use the softmax
loss function which is most commonly used to train deep neural
networks by modeling the categorical probability distribution
for multi-class classification tasks. Because it would not be
effective under the scenario of multi-label action recognition
where a training sample can be assigned to multiple categories
and the scenario of multimedia event detection where the quan-
tity of training samples in each category is unbalanced or not
adequate. Therefore, we present a new loss function named
multi-label correlation loss for multi-label action recognition
by exploring the symbiosis relationship among different actions.
For multimedia event detection, we adopt the triplet loss [16],
[17] which is a weakly supervised signal to address the problem
of unbalanced number of training data in different categories.

Multi-Label Correlation Loss: In many scenarios, people per-
form different kinds of actions almost simultaneously. Appar-
ently, there are some correlations among these actions in terms
of their occurrence probabilities. Therefore, we propose a multi-
label correlation loss to take the relationships among actions into
consideration. Let S = [s1 , s2 , ..., sN ] ∈ RC×N be the output
of the last fully connected layer, where sn = [s1

n , s2
n , ..., sC

n ]T

with C being the number of action categories. The multi-label
correlation loss is formulated as

Lcorr = −
∑

n

∑

c

yc
n log sc

n + (1 − yc
n ) log(1 − sc

n )

−
∑

n

∑

i �=j

γijDK L (si
n ||sj

n ), (8)

where yc
n ∈ {1, 0} is the cth class label of the nth

video. DK L (si
n ||sj

n ) = si
n log si

n

sj
n

+ (1 − si
n ) log 1−si

n

1−sj
n

is the
Kullback-Leibler divergence which aims to measure the dif-
ference of the co-occurrence probability between si

n and sj
n .

γij is a factor reflecting that to what extent the ith and jth
classes co-occur. To reduce the complexity of our model, we
manually set each co-occurrence factor γij empirically accord-
ing to the percent of the co-occurred action videos to the total
number of action videos of both the ith and ith classes. Details
of setting the parameter γ will be discussed in Section IV. To
ensure sc

n ∈ (0, 1), we add sigmoid activation to the last fully
connected layer. The gradient of the loss Lcorr with respect to
sc

n is calculated by

∂Lcorr

∂sc
n

=
sc

n − yc
n

sc
n (1 − sc

n )

+
∑

c �=i

(
γci log

sc
n (1 − si

n )
si

n (1 − sc
n )

+ γic
sc

n − si
n

sc
n (1 − sc

n )

)
.

(9)

The l1-norm is applied to each output vector sn to enforce its
sparsity, because people cannot take many actions at the same
time.

Triplet Loss: Technically, tasks for multimedia event detec-
tion are more like the retrieval tasks, where each category has
only a few positive exemplars. For instance, there are 8,030
training videos identified to 20 categories in the MEDTest 14
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dataset which is the largest publicly available video corpora for
event detection, but each event class contains only about 100
positive videos in the 100Ex scenario. The triplet loss is widely
applied to person re-identification [16], [19], face recognition
[17], [44], [45], and object retrieval [18]. It aims to verify iden-
tity by comparing descriptors in Euclidean space. Specifically,
the input of the triplet loss layer is a set of the triplet units,
{(ta

i , tp
i , t

n
i )} ⊆ T , where ta

i , tp
i and tn

i denote the anchor, pos-
itive and negative descriptors of the ith output of the last fully
connected layer, respectively. T is the set of all possible triplets
in the training set and has the cardinality N . We hope that ta

i

shares the same identity with tp
i and is different from tn

i as much
as possible. Thus the constraint is set to

‖ta
i − tp

i ‖2 < ‖ta
i − tn

i ‖2 , ‖t‖2
2 = 1, (10)

which means that the anchor descriptor is closer to the positive
descriptor than the negative descriptor in Euclidean space with
the margin of β. Consequently, the triplet loss is defined as

Ltriplet =
N∑

i

max(‖ta
i − tp

i ‖2 − ‖ta
i − tn

i ‖2 + β, 0). (11)

It is infeasible to accumulate all the possible triplets over
the whole training set for Ltriplet due to the high computation
cost. In order to ensure fast convergence and good optimization,
we select a part of triplets including hard negative triplets and
random triplets. For a batch of K samples, we enforce that the
batch can be divided into K/2 pairs where each pair contains
two samples with the same label, i.e., ta and tp . Samples with
different labels can be combined with ta and tp to form triples.
For ta, M triplets are selected where the hard negative triplets
take the percentage of η (0 ≤ η ≤ 1) which can be tuned in
real applications. In other words, the number of hard negative
triplets is ηM and the number of random triplets is (1 − η)M .
The hard negative triplets for ta are generated by selecting the
ηM farthest samples to ta , and the random triplets are generated
by selecting samples of other classes randomly except for the
samples selected in hard negative triplets. For tq, M triplets
can also be selected in the same way. Therefore, we have N =
K/2 × 2 × M = KM triples for a batch of K samples.

Training protocol of the FASNet: For a new action recognition
task, the FASNet (see Fig. 1) described before needs to be trained
by a given dataset. Firstly, we extract the scene features and local
spatial-temporal features of the videos in the dataset using the
ImageNet pre-trained ResNet and Sports-1M pre-trained C3D,
respectively. The scene features of each video are aggregated
into one descriptor by the average pooling operation. Secondly,
the CANet pre-trained using the clean action video dataset and
the complex videos of 55 categories in the UCF101 and the
HMDB51 is fine-tuned by using the local spatial-temporal fea-
tures of the given training dataset. We remove the last fully
connected layer of the CANet, and make it to be a part of
the FASNet. Thirdly, the FASNet is trained with the loss for
the specific task by fixing the weights of the CANet part until
the FASNet converges. Finally, we set the part of the CANet to
be trainable, and fine-tune the entire FASNet.

IV. EXPERIMENTS AND RESULTS

A. Datasets

Extensive experiments are conducted on the Hollywood2 [38]
and the TRECVID MEDTest 141 datasets to evaluate the per-
formance of our method. Mean Average Precision (mAP) is
applied to evaluate the performance of the proposed method on
both Hollywood2 and TRECVD MEDTest 14 datasets.

The Hollywood2 dataset contains 12 action categories, in-
cluding “AnswerPhone”, “DriveCar”, “Eat”, “FightPerson”,
“GetOutCar”, “HandShake”, “HugPerson”, “Kiss”, “Run”,
“SitDown”, “SitUp” and “StandUp” with 3,669 video clips
which are collected from 69 different Hollywood movies. In
our experiments, we use the video dataset with 1,707 action
videos and split it into a training set of 823 videos and a test
set of 844 videos by following the standard split strategy as
[38]. Different from other action datasets, such as the UCF101
[36] and the HMDB51 [37] datasets, a video of the Hollywood2
dataset can be classified to multiple classes. Accordingly, on
this dataset, we fine-tune our model by using the multi-label
correlation loss.

The TRECVID MEDTest 14 dataset consists of 20 event cat-
egories which are identified as E21-E40, namely “attempting a
bike trick”, “cleaning an appliance”, “dog show”, “giving direc-
tions to a location”, “marriage proposal”, “renovating a home”,
“rock climbing”, “town hall meeting”, “winning a race without
a vehicle”, “working on a metal crafts project”, “beekeeping”,
“wedding shower”, “non-motorized vehicle repair”, “fixing mu-
sical instrument”, “horse riding competition”, “felling a tree”,
“parking a vehicle”, “playing fetch”, “tailgating” and “tuning
musical instrument”. We conduct our experiments in the EK100
scenario where each event class has about 100 positive training
videos. There are totally 8,030 training videos with 4,983 nega-
tive exemplars. The testing dataset has about 23,000 videos. As
far as we know, the MEDTest 14 dataset is the largest publicly
available video corpora for event detection. Since actions are
the major constituent parts of almost all the events, we consider
event detection tasks to be a kind of application of action recog-
nition tasks. Apparently, classifiers trained on the MEDTest 14
dataset are prone to overfit due to the unbalanced quantity of
positive and negative exemplars. Therefore, we use the triplet
loss for this task.

The clean dataset consists of the KTH dataset, the Weiz-
mann dataset as well as a part of the UCF101 and HMDB51
datasets. The KTH and the Weizmann are constrained action
datasets, and the backgrounds of videos in these datasets are
simple without any irrelevant action. Therefore, we take these
two entire datasets into our clean video dataset. The UCF101
and HMDB51 are realistic action datasets, of which videos are
mainly obtained from movies and the Internet. We just select
videos with relevant actions and simple backgrounds to form
the clean action dataset. Here, background is supposed to be
simple, when background objects are relative still or with subtle
movements to the ground. Some categories of the clean videos
collected from these 4 publicly available datasets still have

1http://www.nist.gov/itl/iad/mig/med14.cfm.
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Fig. 5. Example frames of the clean video dataset. Frames in the same column
are from the same dataset. (a) KTH, (b) Weizmann, (c) UCF101, (d) HMDB51,
and (e) Self-collected dataset.

insufficient number of exemplars, so we record some action
videos by ourselves as supplementary. There are 137 video clips
performed by 5 subjects taken by ourselves. Totally, there are
780 clean action videos with 55 clean categories. Fig. 5 shows
the example frames of the clean videos.

The pre-training videos of the CANet are the clean videos
and the complex videos with the 55 categories in the UCF101
and HMDB51 datasets with totally 23,996 videos. Although it
seems that the procedures of collection, annotation and feature
extraction of these clean videos are labor-intensive and time-
consuming, it is worth noting that once the CANet is trained,
there is no need to collect new clean videos to fine-tune the
CANet for new action recognition tasks. The ground truth of
the regression loss and codewords which have been calculated
from the clean videos are no longer changed.

B. Implementation Details

Preprocessing: The size of each input video of the C3D model
pre-trained on the Sports-1M is 16 × 128 × 171. To obtain more
and finer information, we take 4 groups of non-overlap 16-
consecutive frame video clips from each video. In fact, more
information from each video as input is better for describing the
video. But due to the limitation of computation resources, we
have to fix the input length of the CANet. For the videos which
are used for pre-training the CANet, we just choose videos
which contain more than 63 frames. If a video has more than
64 frames, we uniformly select 4 groups of 16 consecutive
frames. We resize each frame by making its shorter size equal to
171 pixels and preserve the aspect ratio of the frames. After-
wards, the 171 × 128 crop is sampled from the center of each
frame.

For the videos of Hollywood2 dataset and MEDTest 14
dataset, if a video contains less than 64 frames, we pad the
ends of video with its first and last frames. If a video has
more than 64 frames, we uniformly select 4 groups of 16 con-
secutive frames. We resize each frame with shorter edge to 171
while keeping its shape unchanged. Unlike the cropping method
mentioned above, we first crop the resized frame to a 171 × 171
crop. Then, for data augmentation, 6 crops are randomly sam-
pled from each frame of the video and its horizontal flip.

We use Theano [46] toolkit for the experiments of the neu-
ral networks designed by us and C3D [11] program for fea-

ture extraction on NVIDIA GeForce GTX TITAN X GPU with
12 GB memory.

Features for fusion: Besides the local spatial-temporal fea-
tures and scene-related features, we also apply Multi-skIp Fea-
ture Stacking (MIFS) [47] to the action recognition task of the
Hollywood2 dataset to obtain more sufficient representations of
the videos. To reduce the complexity of CANet, PCA is applied
to reduce the dimensionality of MIFS into 1,600 with more than
90% information preserved.

Parameters: For the loss of CANet, the parameters θ and λ

are set to 0.02 and 500,000, respectively. For the parameters
γ of the multi-label correlation loss, we set γij = γji . After
analyzing the co-occurrence probability of actions in the Hol-
lywood2 dataset, we empirically set correlation parameters γ
of the “HugPerson” and the “Kiss” to 0.009, the “FightPerson”
and the “run” to 0.0005, the “SitDown” and the “StandUp” to
0.0005, and others to 0 (i.e., the classes are supposed to be ir-
relevant to each other). We test the result with litter change in
this parameter setting, and find that the result changes little, but
it changes much when this parameter is set on other orders of
magnitude, such as 0.09 and 0.9. The probable reason is that
this parameter reflects the relative importance of the two terms
in the multi-label correlation loss shown in Eq. 8. For the triplet
loss, we set the parameter β to 1.

C. Performance of the CANet

Intuitively, the proposed CANet aims to learn more discrimi-
native and meaningful representations of action videos. In order
to evaluate the quality of the proposed CANet, we use the video
representations learned by the CANet and linear SVM classi-
fiers for action recognition (CANet+SVM). Additionally, we
directly use the prediction scores of the CANet for recogni-
tion (CANet Score). We also compare the proposed methods
(CANet+SVM and CANet Score) with two baseline methods as
follows:

1) C3D: Following [11], we extract C3D fully-connected
layer features from action videos with 4 temporal strides,
and use linear SVM classifiers for action recognition.

2) C3D+VLAD: We encode the local spatial-temporal fea-
tures by VLAD-all with 64 centers, and use linear SVM
classifiers for action recognition.

Fig. 6 shows the per-action AP comparison among these
methods on the Hollywood2 dataset. Our method outperforms
others in most action classes. We notice that performances
on videos containing cluttered background improve a lot, such as
videos in “AnswerPhone”, “GetOutCar”, etc. Performances on
videos containing only the close-up of actions improve a little,
such as videos in “DriveCar” and “Kiss”. It indicates that the
proposed CANet can eliminate irrelevant motion information
and preserve more meaningful information. The probable rea-
son of the inferior performance of the C3D is that it is pre-trained
on a sports-related action dataset and the fully-connected layer
may learn the representations of the sports related actions. The
overall better performance of the proposed CANet than VLAD-
all shows that features encoded by the CANet can unearth more
meaningful information for action recognition.
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Fig. 6. Average precisions of the 12 classes of videos on the Hollywood2
dataset.

D. Performance of the FASNet

An appropriate feature fusion method may significantly en-
hance the performance of action recognition. Here we investi-
gate the effectiveness and efficiency of the proposed FASNet on
the Hollywood2 and the MEDTest 14 datasets.

On the Hollywood2 dataset, action recognition is performed
by linear SVM classifiers (FASNet+SVM) and the output pre-
diction scores of the FASNet (FASNet Score). On the MEDTest
14 dataset, we extract action-scene features learned by the FAS-
Net and apply linear SVM classifiers for complex event detec-
tion (FASNet+SVM). Then, we compare the proposed fusion
methods (FASNet+SVM and FASNet Score) with two baseline
methods as follows:

1) CANet+SVM and ResNet+SVM: To demonstrate that fus-
ing multiple features is beneficial to data representation,
we extract features from CANet and ResNet, respectively,
and apply linear SVM classifiers for action recognition
and event detection.

2) CANet+ResNet+GMKL: To evaluate the efficiency of our
fusion strategy, we apply the widely used feature fu-
sion method of Generalized Multiple Kernel Learning
(GMKL) [48] with linear kernels to fuse the features of the
CANet and the ResNet for action recognition and event
detection.

Table I presents the comparison of our fusion method using
FASNet with the baseline methods. All the results show that the
FASNet based methods are better than both the single feature
based methods and the multi-feature fusion based methods on
the Hollywood2 and the MEDTest 14 datasets. On the MEDTest
14 dataset which contains complex events, motion information
is so noisy that it somehow degrades the performance, resulting
in the lower mAP of the CANet than the ResNet. However,
by fusing the motion and scene features, the performance is
significantly improved, which suggests the complementarity of
the two kinds of features.

E. Comparison With the State-of-the-Art Methods

To show the feasibility of our method for action recognition,
we compare our method with the state-of-the-art methods. For

TABLE I
ACTION RECOGNITION PERFORMANCE (MAP, %) WITH AND WITHOUT

FEATURE FUSION METHODS ON THE HOLLYWOOD2 DATASET

AND MEDTEST 14 DATASET

Method Hollywood2 MEDTest 14

Using single feature

CANet+SVM 43.0 30.6
ResNet+SVM 32.9 34.2

Fusing multiple features with GMKL

CANet+ResNet+GMKL 50.6 38.7

Our methods

FASNet Score 55.5 -
FASNet+SVM 59.9 41.0

the Hollywood2 dataset, we fuse the MIFS features as comple-
mentary information with the features of the proposed FASNet
(FASNet+MIFS+SVM), and compare our methods with several
state-of-the-art methods [5], [21], [23], [47], [49]–[52]. Sun
et al. [49] developed a Deeply-Learned Slow Feature Analysis
(DL-SFA) structure which contains one convolutional layer and
two pooling layers to learn abstract and robust features with the
guidance of SFA for action recognition. Jain et al. [50] encoded
the output features of the softmax layer of CNN for object clas-
sification to recognize actions in videos. They also combined
the deep features with IT features, which leads to satisfactory re-
sults. Sharma et al. [51] presented recurrent soft attention based
models for action recognition to automatically select the impor-
tant elements in video frames. Fernando et al. [21] proposed
a hierarchical rank pooling method which uses non-linear rank
pooling to aggregate frame-based deep CNN features. They also
combined their hierarchical rank pooled features with encoded
IT features using average kernel method, which yields better
action recognition performances. The IT features proposed by
Wang et al. [5] are introduced above, and here the features are
encoded by using the Fisher Vectors (FV) method [23]. Lan
et al. [47] developed the MIFS method as auxiliary features for
action recognition on the Hollywood2 dataset. Fernando et al.
[52] proposed an unsupervised rank pooling method to model
the evolution on motion information in videos.

From Table II, we can observe that approaches using deep
features perform much poorer than that using hand-crafted fea-
tures. It indicates that the video representations of deep net-
works is not general enough due to the lack of labeled videos.
Since 2D CNNs pre-trained on the ImageNet dataset are general
enough on image-based tasks, they can also sufficiently repre-
sent the scene information of each frame in a video. However,
the important motion information of actions is discarded. 3D
CNNs pre-trained on the Sports-1M dataset can capture motion
information yet still not general enough w.r.t. high level seman-
tics. Our approach fusing deep 2D and 3D CNN features per-
forms well among other deep feature based approaches, which
shows the effectiveness of our approach by capturing both the
scene and motion information. Moreover, our method of fusing
the MIFS and deep features outperforms other state-of-the-art
methods, which indicates that hand-crafted features MIFS are
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TABLE II
ACTION RECOGNITION RESULTS OF DIFFERENT METHODS ON THE

HOLLYWOOD2 DATASET

Method 3D/2D CNN mAP (%)

Using hand-crafted features only

Wang et al. [5] - 64.3
Lan et al. [47] - 68.0
Fernando et al. [52] - 73.7

Using deep features only

Sun et al. [49] 3D 48.1
Jain et al. [50] 2D 38.4
Sharma et al. [51] 2D 43.9
Fernando et al. [21] 2D 56.8
FASNet+SVM 3D+2D 59.9

Fusing deep features and hand-crafted features

Jain et al. [50] 2D 66.6
Fernando et al. [21] 2D 76.7
FASNet+MIFS+SVM 3D+2D 78.1

TABLE III
EVENT DETECTION RESULTS OF DIFFERENT METHODS ON THE MEDTEST

14 DATASET

Method 3D/2D CNN mAP (%)

Using hand-crafted features

Wang et al. [5] - 27.0
Lan et al. [47] - 29.0

Fusing deep features and hand-crafted features

Zha et al. [54] 2D 38.7

Using deep features

Xu et al. [53] 2D 36.8
FASNet+SVM 3D+2D 41.0

complementary to the deep features from the CANet on the
Hollywood2 dataset. The probable reason is that the MIFS en-
codes the improved trajectory (IT) features which represent the
low-level gradients along optical flows while CANet encodes
the higher level C3D features which contain more abstract se-
mantics.

For the MEDTest 14 dataset, we compare the proposed
method with several state-of-the-art methods of [5], [47], [53],
[54] Xu et al. [53] proposed to use frame-level CNN features
and Latent Concept Descriptors (LCD) encoded by VLAD, and
combined the features with IT features for event detection. Zha
et al. [54] combined IT features with spatial-temporal pooling
of frame-level CNN features for event detection. As shown in
Table III, our method outperforms all the state-of-the-art meth-
ods on the MEDTest 14 dataset by taking advantages of action
and scene information without using hand-craft features. Unlike
action recognition tasks on the Hollywood2 dataset, event detec-
tion performances of hand-crafted feature based methods on the
MEDTest 14 dataset are even worse than 2D CNN based meth-
ods. It is probably because videos in the MEDTest 14 dataset are
more complex and contain more irrelevant motion information
than videos in the Hollywood2 dataset. Meanwhile, scene infor-
mation is more discriminative than simply encoding the noisy

local motion information extracted from the videos for complex
event detection. Since we fuse scene features extracted from
2D CNN and the most relevant action features learned from the
proposed CANet, our method achieves the best performance.

In this paper, we focus on action recognition tasks. The pro-
pose method can only be used in human action related tasks so
far, since the clean video dataset only contains human actions.
There are various motions performed by different objects in the
real world. For wider range of of applications, such as the CDnet
challenge [55], the mechanism of the proposed method could
be used by extending the clean video dataset with motions of
different kinds of objects.

V. CONCLUSION

We have proposed a novel deep learning model, Factorized
Action-Scene Network (FASNet), by integrating the Content
Attention Network (CANet) to fuse the most relevant motion
information and useful scene information for action recognition.
We also have formulated two loss functions, namely multi-label
correlation loss and triplet loss, as guidance of the proposed deep
architecture to learn more suitable representations for specific
complex action recognition tasks. Empirical evaluations on dif-
ferent datasets have demonstrated that the proposed FASNet can
effectively exploit more descriptive and discriminative motion
and scene information from realistic videos, and is thus feasible
to recognize actions in complex videos. In the future, we plan
to develop a new algorithm to find key frames from video and
learn more representative and compact local spatial-temporal
features for the FASNet.
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