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Extracting Key Segments of Videos for Event
Detection by Learning From Web Sources

Hao Song, Xinxiao Wu , Member, IEEE, Wennan Yu, and Yunde Jia, Member, IEEE

Abstract—In this paper, we present a novel approach of
extracting the key segments for event detection in unconstrained
videos. The key segments are automatically extracted by
transferring the knowledge learned from Web images and Web
videos to consumer videos. We propose an adaptive latent
structural support vector machine model, where the locations of
key segments in videos are regarded as latent variables due to
the unavailability of the ground truth of key-segment locations in
training data. In order to alleviate the time-consuming and labor-
expensive manual annotation of huge amounts of training videos,
a large number of loosely labeled Web images as well as videos are
collected from the Web sources. Additionally, a limited number of
labeled consumer videos are utilized to guarantee the precision of
the model. Considering the semantic diversity of key segments, we
learn a set of concepts as the semantic description of key segments
and explore the temporal information of concepts to capture
the sequential relations between the segments. The concepts are
automatically discovered by using Web images and videos with
their associated tags and description sentences. Comprehensive
experiments on the Columbia’s consumer video and the TRECVID
2014 Multimedia Event Detection datasets demonstrate that our
method outperforms the state-of-the-art methods.

Index Terms—Event detection, key segments, transfer learning,
automatic concept discovery.

I. INTRODUCTION

D ETECTING complex events in unconstrained videos is
an extremely challenging task due to the arbitrariness

of consumer videos in computer vision [1], [2]. The complex
events are usually composed of various basic actions, objects
and scenes [3]–[5]. A single semantic concept such as the event
class label is not sufficient to abstract the contents of complex
events. Thus, it is essential to employ multiple semantic con-
cepts as the description of events [6]–[8].

Taking the event of “wedding ceremony” for example, it usu-
ally consists of the action concepts of “hugging” and “kissing”,
the object concept of “wedding dress”, and the scene concept of
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“church”. The single concept of “kissing” or “hugging” is not
able to interpret this event completely. Moreover, in real sce-
narios, an event video usually lasts for several minutes or even
an hour, so there may be irrelevant or redundant information in
video which will negatively impact the understanding of events.
In this paper, we try to automatically extract the informative
segments from consumer videos for event detection. Consider-
ing the temporal relations between key segments in a specific
event, it is effective to model the temporal constraints between
segments for key segment extraction and event detection.

Since the great intra-class variation exists in event videos, a
number of videos are required to achieve the promising results
by covering all the possible instances of all the event classes [3],
[9], [10]. However, manually annotating the training videos is
time-consuming and labor-expensive. To alleviate this problem,
we propose to explore rich and loosely labeled Web resources as
training data for detecting complex events in consumer videos.

This paper presents an adaptive latent structural SVM to
extract key segments for event detection by transferring the
discriminative model learned by Web resources to consumer
videos, in which the locations of key segments in videos are
designed as latent variables. A large number of loosely labeled
images (from Flickr and Google) and videos (from Youtube)
are utilized in the training phase. Additionally, a limited num-
ber of labeled consumer videos are also collected to guarantee
the precision of the event detection model. A set of semantic
concepts is employed to describe the overall content of a spec-
ified event video, and each single semantic concept is chosen
as the description of each local video segment. Considering the
temporal relationship between different segments represented
by the concepts, we develop a Temporal Relation Model (TRM)
to exploit the temporal relations between the key segments. We
also integrate a Segment-Event Interaction Model (SEIM) into
the adaptive latent structural SVM model to evaluate the corre-
lations between the key segments and the specified events.

Since the manually defined concept might fail to repre-
sent real-world events without the adaptability to different do-
mains [11], [12], we try to discover the concepts automatically
by leveraging the tags and description sentences from Web im-
ages and videos. We introduce the N adjacent point sample
consensus (NAPSAC) [13] to eliminate the noisy images and
videos, and then use the hierarchical clustering [14] to generate
the last concepts with their associated Web sources by jointly
taking account of the similarity of the textual descriptions and
the content of their related resource sets. The detailed framework
of our method is shown in Fig. 1.
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Fig. 1. The framework of the proposed method. We automatically discover concepts by learning from Web images and videos with their associated tags and
description sentences. Then the Web sources are used to train the basic concept SVM classifiers. The knowledge learned from the Web sources is transferred to
adapt to an optimal target classifier. Also, we explore the temporal relationship to extract the key segments of a video. A discriminative model is learned by using
an adaptive latent structural SVM model for high level event classification.

The main contributions of our method are three-fold: (a) We
propose a novel framework to simultaneously extract the key
segments of videos and classify the high-level events. Each seg-
ment is described by a concept which is chosen from the auto-
matically discovered concept pool. (b) We leverage the knowl-
edge learned from Web videos and images to extract the key
segments of videos by exploiting their temporal relationship.
(c) We combine the NAPSAC and the hierarchical clustering to
automatically discover the concepts to extract the segments in
videos.

II. RELATED WORK

A. Domain Adaptation for Event Detection

Many researchers draw attention to the topic of detecting
complex events in videos using domain adaptation since the
limitation number of training examples. Zhang et al. [15] lever-
aged abundant Web images to learn the noise-resistant classifiers
for modeling the event-centric semantic concepts. The concepts
are encoded in the knowledge base to narrow the semantic gap
between complex events. Wang et al. [16] presented a set of
concept groups to incrementally learn the target classifier, where

each concept group consists of the images querying from Web
and some simple action videos. Long et al. [17] proposed a trans-
fer kernel learning method to learn a domain-invariant kernel
by matching source and target distributions in the reproduc-
ing kernel Hilbert space. Duan et al. [18] proposed a multiple
source domain adaption method by selecting the most relevant
image source domains for annotating videos. Different from
these methods which encode a global video-level feature over
the entire video, our method extracts the local segment-based
features for recognizing complex events.

B. Extracting Segments of Videos for Event Detection

Due to the complexity of unconstrained videos, many meth-
ods focus exploiting the segments of videos for complex event
detection. Phan et al. [3] divided a video into several segments
for feature extraction and classification, using the segment-
based approach to produce a video representation for event de-
tection. Li et al. [19] detected bursty tweet segments as event
segments and clustered the segments into events by consider-
ing both the frequency distribution and content similarity of
segments. Song et al. [20] detected the key segments of com-
plex videos by leveraging image sets. Sun et al. [5] proposed an
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evidence location model to discover the video segments for event
classification and recounting. They also leveraged the detected
oriented discriminative segments in videos and the descriptions
of segments for event detection [21]. Tang et al. [22] auto-
matically discovered discriminative and interesting segments
of videos on the variable-duration hidden markov model. Li
et al. [23] leveraged a global dynamic pooling structure to model
the temporal relations between segments and the event specific
videos. The locations of the segments are also treated as hid-
den information. Chang et al. [24] presented a joint framework
which simultaneously detects high-level events and discovers
the segments in event videos. An event video is represented as
a mid-level concept semantic vector. And all the relationships
are built on this concept representations. Different from these
segment discovery methods, the concepts in our framework are
automatically discovered. Our method introduces a latent struc-
tural SVM framework of event detection which utilizes large
amounts of loosely labeled Web sources and a few labeled
training target videos. Each segment corresponds to one con-
cept, the segment discovery and event detection are processed
simultaneously.

C. Collecting Concepts Manually for Event Detection

Many works also try to detect complex events using the con-
cept learning based methods. Mazloom et al. [25] proposed an
approximate solution to find a set of informative concepts using
cross-entropy optimization and they learned the concept pro-
totypes from a set of relevant frames of Web video examples
without any annotations [26]. Merler et al. [27] presented a
mid-level semantic representations with 280 relevant concepts
which are trained by labeled Web images. Habibian et al. [4]
constructed a pool of 1346 concept detectors trained on the
ImageNet [28] and TRECVID [29] to create an effective vocab-
ulary for event recognition. Different from the concepts which
are manually defined, we present a new algorithm to automat-
ically discover the concepts from loosely labeled Web images
with their associated tags.

III. AUTOMATIC CONCEPT DISCOVERY

A. Generation of Preliminary Concept Pool

Owing to the rapid growing of Web sources, we try to utilize
the textural descriptions of large Web images and videos for gen-
erating the preliminary pool of concepts. Particularly, we query
images and videos by using the textual descriptions of specified
events as keywords. Both the images and videos, which are re-
spectively collected from the Flickr and Youtube Websites, have
their own semantic tags or description sentences. Thus we can
adopt the Term Frequency-Inverse Document Frequency (TF-
IDF) algorithm [30] to extract the keywords from those textural
descriptions of Web images and videos. Finally, the preliminary
concept pool is generated by collecting all the extracted key-
words and selecting only the original tags of Web sources with
high frequency. For each tag/keyword, it corresponds to a few
images or videos, and for each Web image/video, it relates to
several tags/keywords.

Algorithm 1: Pseudo-code of NAPSAC for Eliminating
Noisy Web sources.

Input: FS: Web sources collected from Flickr and
Youtube using event textual descriptions at the first
stage; SS: Web sources queried from Google and

Youtube using the concept descriptions in preliminary
concept pool at the second stage.
Output: I: refined concept training example sets.

1 For each concept c, the related web sources are
refined as follows:

2 Step 1: Select an initial web source (image/video) x1
from source set FSc .

3 Step 2: Find the set of source, SIx1 , from the source set
SSc which is lying within a hypersphere of radius R
centered on x1 .

4 Step 3: If the number of sources in SIx1 is less than the
prescriptive size then fail. In our experiment, we set the
prescriptive size of images as 50 and videos as 10,
respectively. Return to Step 1.

5 Step 4: Select the sources from SIx1 uniformly until the
prescriptive size of the effective source set Ic has been
selected, inclusive of x1 .

B. Refinement of Noisy Concepts and Web Sources

Since the tags and description sentences of Web im-
ages/videos are given by various uploaders with subjectivity
and arbitrariness, there are a portion of meaningless words that
are irrelevant to the event videos. To make the concepts in the
preliminary concept pool have reasonable meaning, we sim-
ply filter the tags/keywords by choosing the extensive Nouns
and Verbs as well as discarding other words because the Nouns
and Verbs can effectively represent the semantics of actions for
events [31]. Fig. 2 shows some examples of the concepts that
we collected after refining.

After refining the noisy concepts, the Web sources belonging
to several concepts are not enough and the quality of the Web
sources may be poor. To collect enough valid training examples,
for each concept, we first search a large number of images from
Google and videos from Youtube by querying the corresponding
concept. Then we use the NAPSAC [13] to eliminate the noisy
images and videos in each concept training set. Specifically, the
images/videos collected at the first stage are treated as the center
points, and the radius R is chosen empirically to determine the
concept circle. The Web images/videos in the circle are selected
as the training examples of the concept. The NAPSAC pseudo-
code algorithm is summarized in Algorithm 1.

C. Hierarchical Clustering of Concepts and Their Associated
Images/Videos

In the refined pool of preliminary concepts, some different
tags/keywords may have similar semantic meaning, so it is es-
sential to merge them into a single meaningful tag/keyword
with the semantic consistence of concepts. Accordingly, the as-
sociated images/videos of these tags/keywords should also be
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Fig. 2. The concepts we collected corresponding to the target event of “Attempting a bike trick,” “Dog Show,” “Playing fetch,” and “Tailgating” after mining.
(a) Attempting a Bike Trick. (b) Dog Show. (c) Playing Fetch. (d) Tailgating.

combined together to enrich the data set for training an informa-
tive concept classifier. Therefore, we introduce the hierarchical
clustering [14] to cluster tags/keywords based on both the text
similarity of textual descriptions and the visual similarity of
their associated images/videos.

Text Similarity: We compute the similarity of two words using
the interface of the WordNet [32] in Python API. The API
provides a packaged method of calculating the distance of two
words. For two short phrases of multiple words (e.g. keywords),
we select every word from each phase to compute the relevance
of the words, and the maximum similarity score is chosen as the
relevance of these two phases. The text similarity of concept ci
and cj is defined as S(Textci , T extcj ).

Visual Similarity: We use the static and motion features to
measure the visual similarity between different concepts. For
different concepts ci and cj , their associated training example
sets are Tci and Tcj , respectively. We extract the deep CNN
features [33] for the images in the image collection and the
motion feature IDT [34] of the videos. A mean representation
of all the training examples is used to stand for the whole training
set. The visual similarity of image/video sets is computed by

S(Tci , Tcj ) = max(cosine(MIci ,MIcj ),

cosine(MVci ,MVcj )), (1)

where MIc and MVc are the image and video mean vectors
of the training set of the concept c, respectively. We have also
investigated other similarity metrics such as Euclidean distance,
χ2 distance and histogram intersection. The cosine similar-
ity strikes the best trade-off between effectiveness and effi-
ciency. So the final similarity between two concepts ci and cj is
given by:

S(ci, cj ) = α · S(Textci , T extcj) + (1 − α) · S(Tci , Tcj),
(2)

where α is a tradeoff parameter.
We then adopt the hierarchical clustering to cluster the can-

didate concepts into M concept groups. The collection of the
concepts used in event detection is composed of these M con-
cept groups. The distances between the concepts in each group
in the clustering are under a distance threshold Tdis . We refine
the description of each concept group based on the textual of the
clustered concepts. Fig. 3 lists several automatically discovered
concepts and their image/video training samples we collected
in the experiment.

IV. MODEL FORMULATION

A. Notation

By using the automatic concept discovery described in
Section III, a set of semantic concepts is found, represented
by S = {s1 , s2 , · · · , sNs

}, where Ns is the total number of the
concepts. For each key segment which is actually a short clip
of an video, one related concept from S is automatically se-
lected to describe its semantic information. Thus the knowledge
learned from Web images and videos belonging to one con-
cept is transferred to the related key segment with the same
concept.

Formally, the queried images and videos are collected as the
training set X s of the source domain Ds . Let X s

p ⊂ X s rep-
resent the p-th training subset related to the p-th concept in S
with Np , the number of samples of X s

p . xsp,j ∈ X s
p denotes the

j-th sample in the p-th training subset, and ysp,j ∈ Ys denotes
the event class label of xsp,j . We model the temporal positions
of key segments in a video as H = [h1 , h2 , · · · , hNg

] and the
concepts of these segments as C = [c1 , c2 , · · · , cNg

], where ci
represents the concept of the i-th segment andNg is the number
of the segments. Since the ground truth ofH andC are not avail-
able in training data, they are treated as latent variables in our
method. Then the pre-learned classifier of the p-th concept using
the training subset X s

p is formulated by fs(xp) = ws
p · Φ(xp),

where ws
p is the template and Φ(xp) is the feature mapping

function.
The consumer videos are collected as the training set X t of

the target domain Dt with Nt , the number of samples of X t .
Let xti indicate the i-th sample of X t and yti indicate the event
class label of xti .

B. Event Detection Model

The event detection can be formulated as predicting the event
class label y of an input video x,

y = argmax
y ,H,C

F(x, y,H,C)

= argmax
y ,H,C

W t · Φ(x, y,H,C). (3)

The discriminative function F(x, y,H,C) is composed of a
low-level event model, a temporal relation model of the key
segments, and an interaction model between the key segments
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Fig. 3. Examples of image and video concepts collected automatically from Web. These concepts cover the actions, objects, and scenes.

and the entire video:

F(x,y ,H,C ) = Wt · Φ(x, y,H,C)

= Fd(x,H,C) + Fa(H,C) + Fb(H,C, y)

=
Ns∑

k=1

Ng∑

g=1

wt
kϕ(x, hg ) · Ik (cg )

+
Ns∑

k=1

Ns∑

l=1

Ng∑

p=1

Ng∑

q=1

waφ(hp, hq ) · Ik (cp) · Il(cq )

+
Ns∑

k=1

Ng∑

g=1

wbψ(hg , y) · Ik (cg ), (4)

where Wt = [wt
1 , · · · , wt

Ns
, wa , wb ] is the joint weight vector

of F . Each model is defined as follows.
1) Low-Level Event Model (LEM):

Fd(x,H,C) =
Ns∑

k=1

Ng∑

g=1

wt
kϕ(x, hg ) · Ik (cg ). (5)

The LEM is the most important part in the event detection
model, which models the contributions of the low-level fea-
tures for event detection. wt

k is a concatenation of wt
kim

and
wt
kv i

, the image and video target template vectors, respectively.
Each video is divided into Ng shot clips, and each clip can be
represented as ϕ(x, hg ), where hg indicates the index of the
g-th clip in video x, and cg represents the concept of this clip.
ϕ(x, hg ) = [ϕim (x, hg ), ϕvi(x, hg )] is also a concatenation of
the image and video feature representation of the g-th clip.
Ik (cg ) is an indication function, and assigned the value of 1 if
cg = k and 0 otherwise. The variablesH andC are not provided
during training and testing.

2) Temporal Relation Model (TRM):

Fa(H,C) =
Ns∑

k=1

Ns∑

l=1

Ng∑

p=1

Ng∑

q=1

waφ(hp, hq ) · Ik (cp) · Il(cq ).

(6)
Exploiting the temporal relationships between segments is sig-
nificantly essential for accurately extracting meaningful key seg-
ments in event detection. For example, in the event of “basket-
ball”, the segment corresponding to the concept of “passing the
ball” often happens before the segment of “shooting the ball”. In
the event of “birthday”, the segment of “blow out the candles”
often occurs after the segment of “burning candles”.

Therefore, we leverage the temporal relation modelFa(H,C)
in Eq. (6) to capture the temporal relationships between the
key segments. φ(hp, hq ) is a temporal vector. When the index
hp of the key segment happens before hq , φ(hp, hq ) = [1, 0]
and φ(hp, hq ) = [0, 1] otherwise.wa = [wa1 , wa2 ] is a template
vector, where wa1 indicates the relation score of the hp -th seg-
ment happening before the hq -th segment and wa2 denotes the
score of the hp -th segment occurring after the hq -th segment.
Ik (cp) is also an indication function with the value of 1 if cp =
k and 0 otherwise. We initialize wa according to the temporal
relations of the concepts which correspond to the segments in a
video.

3) Segment Event Interaction Model (SEIM):

Fb(H,C, y) =
Ns∑

k=1

Ng∑

g=1

wbψ(hg , y) · Ik (cg ). (7)

The interaction between segments and events is also an informa-
tive factor in event detection. For example, the probability of the
segment of “dog” appears in the high-level event of “dog show”
is very high while “dog show” hardly contains the segment of
“guitar”.
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So we propose the Segment Event Interaction Model to cap-
ture the contextual interactions between the key segments and
the entire event. When the segment hg appears in the event y,
ψ(hg , y) is assigned to 1. Ik (cp) is an indication function with
the value of 1 if cg = k and 0 otherwise. wb is the template
vector and we initialize wb according to the cg -th concept.

V. MODEL LEARNING

A. Objective Function

The source event classifier learned from Web images and
videos is formulated as Ws = [ws

1 , w
s
2 , · · · , ws

k , · · · , ws
Ns
,

ws
a , w

s
b ], where ws

k = [ws
kim

, ws
kv i

] is the k-th SVM classifier
trained by images and videos in X s

p . ws
kim

and ws
kv i

are the
image and video classifiers. ws

a and ws
b are the initial temporal

template and interaction template, respectively.
The target classifier Wt is trained by using a limited number

of labeled training videos. Given a training video xi from the
target domain, yi is the ground-truth label of xi and y∗i is the
optimal label of xi . The parameter vector Wt is learned by
the following optimization problem:

min
W t

1
2

∥∥∥ΔW
∥∥∥

2
+ λ1

Nt∑

i=1

ξi + λ2

Nt∑

i=1

ζi (8)

s.t.

max
Hi ,Ci

F(xi, yi ,Hi, Ci) − max
H ∗

i ,C
∗
i ,y

∗
i

F(xi, y∗i , H
∗
i , C

∗
i )

≤ L(yi, y∗i , H
∗
i , C

∗
i ) − ξi, (9)

0 ≤ ξi,∀(xi, yi) ∈ DT , (10)

Ns∑

k=1

Ng∑

g=1

Ik (Cg ) = K, (11)

ζi =
Ns∑

m=1

Ns∑

n=1

Ng∑

p=1

Ng∑

q=1

||fm (xi, hp , cp) − fn (xi, hq , cq )||,

(12)

where λ1 , λ2 are trade-off parameters. L(yi, y∗i , H
∗
i , C

∗
i ) is 0–1

loss function defined by L(yi, y∗i , H
∗
i , C

∗
i ) = 0 if yi = y∗i and

1 otherwise. This loss function is used to enforce the decision
value of the newly learned target classifier not far away from
the source classifier.

The regularization term ΔW = Wt −Ws is introduced
to indicate that the target classifier Wt should be close to
the source hyperplane Ws . The constraint in Eq. (9) can
be explained as follows: for the i-th training sample, the
score maxHi ,Ci

F(xi, yi ,Hi, Ci) which is associated with the
ground-truth event label yi , latent locations Hi and concept Ci
should be no less than the score maxH ∗

i ,C
∗
i ,y

∗
i
F(xi, y∗i , H

∗
i , C

∗
i )

which is associated with any hypothesized event label y∗, seg-
ment locations H∗

i and concept C∗
i .

The constraint in Eq. (11) shows that K key segments are
automatically extracted in a video, where Ik (cg ) is an indication
function and is assigned to 1 when cg = k, showing that the
concept k has been localized in the g-th clip.

We also append another constraint in Eq. (12) for extracting
more informative key segments. This indicates that all the se-
lected concepts are important to detect events and the decision
values of the detected key segments should be close to each
other. fm (xi, hp , cp) denotes the decision value of the hp -th key
segment in video xi , defined by

fm (xi, hp , cp) = wt
mϕ(xi, hp) · Im (cp), (13)

B. Optimization

In order to solve the non-convex optimization problem in
Eq. (8), we first select K fixed concepts, then an iteration op-
timization algorithm is proposed to alternate between inferring
the unobservable (Hi,Ci) given the pair (xi, yi) and solving
the standard structural SVM when (Hi,Ci) is observable. Af-
ter learning the fixed target classifier, we re-select K optimal
key segments corresponding to the concepts with a dynamic
programming algorithm.

1) Finding the Optimal Target Classifier With Fixed K Con-
cepts: We fix the selectedK concepts corresponding to the key
segments in the video. With the fixed K concepts, Eq. (8) turns
to be the latent structural SVM model:

min
W t

L(Wt) =
1
2

∥∥∥ΔW
∥∥∥

2
+ λ

Nt∑

i=1

Ri(Wt), (14)

and Ri(Wt) is a hinge loss function defined as

Ri(Wt) = max
Hi ,Ci

F(xi, yi ,Hi, Ci) − max
H ∗

i ,C
∗
i ,y

∗
i

F(xi, y∗i , H
∗
i , C

∗
i)

+ L(yi, y∗i , H
∗
i , C

∗
i )

+
Ns∑

m=1

Ns∑

n=1

Ng∑

p=1

Ng∑

q=1

||fm (xi, hp , cp) − fn (xi, hq , cq)||,

(15)

where

(H∗
i , C

∗
i ) = argmax

Hi ,Ci

F(xi, yi ,Hi, Ci), (16)

y∗i = argmax
yi

F(xi, yi ,H∗
i , C

∗
i ). (17)

We adopt a non-convex cutting plane method proposed in
[35] to solve the non-convex optimization problem. The non-
convex cutting plane method aims to iteratively build an increas-
ingly accurate piece-wise quadratic approximation of Ri(Wt)
based on its sub-gradient ∂W tRi(Wt). Now the primary task
is to compute the sub-gradient ∂W tRi(Wt). The sub-gradient
∂W tRi(Wt) can be computed by

∂W tRi(Wt) =
Ns∑

k=1

Ng∑

g=1

ϕ(x, hg ) · Ik (cg )

−
Ns∑

k=1

Ng∑

g=1

ϕ(x, h∗g ) · Ik (c∗g )
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+
Ns∑

k=1

Ns∑

l=1

Ng∑

p=1

Ng∑

q=1

φ(hp, hq ) · Ik (cp) · Il(cq )

−
Ns∑

k=1

Ns∑

l=1

Ng∑

p=1

Ng∑

q=1

φ(h∗p , h
∗
q ) · Ik (c∗p) · Il(c∗q )

+
Ns∑

k=1

Ng∑

g=1

ψ(hg , y) · Ik (cg )

−
Ns∑

k=1

Ng∑

g=1

ψ(h∗g , y) · Ik (c∗g )

+
Ns∑

m=1

Ns∑

n=1

Ng∑

p=1

Ng∑

q=1

|ϕ(xi, hp) · Im (cp)

− ϕ(xi, hq ) · In (cq )| ·A, (18)

where A =
∣∣∣∣fm (xi, hp , cp) − fn (xi, hq , cq )

∣∣∣∣.
2) Finding the Optimal K Concepts With Fixed Wt: When

fixing Wt , Eq. (8) turns into a 0–1 integer programming prob-
lem:

max
Nt∑

i=1

Ns∑

k=1

Ng∑

g=1

fk (xi, hg , cg ) (19)

s.t.

Ns∑

k=1

Ng∑

g=1

Ik (cg ) = K, (20)

Ik (cg ) = 0/1,∀k ∈ [1, Ns ],∀g ∈ [1, Ng ]. (21)

We use the dynamic programming algorithm to resolve this
problem. The main issue is how to select the top K concepts
relevant to the key segments in videos from the concept collec-
tion S with Ns concepts. There are two conditions to select K
concepts from S: (i) SelectK concepts fromNs-1 concepts. (ii)
SelectK−1 concepts fromNs−1 concepts and select theNs -th
concept. We choose the max value of these two conditions. Let
EV (Ns) represent the decision value of the Ns-th concept in
event detection formulated as

EV (Ns) =
Nt∑

i=1

Ng∑

g=1

wt
Ns
ϕ(xi, hg )INs

(cg ). (22)

The procedure of dynamic programming can be defined as

E(Ns,K) = max(E(Ns − 1,K),

E(Ns − 1,K − 1) + EV (Ns)), (23)

The detailed optimization algorithm for complex event detec-
tion is summarized in Algorithm 2.

VI. EXPERIMENT

We evaluate the proposed method on two datasets: the
TRECVID2014 Multimedia Event Detection dataset [36] and
the Columbia’s Consumer Video (CCV) dataset [37]. The mean

Algorithm 2: Algorithm for Complex Event Detection.

Input: (xsp,i , y
s
p,i)|Np

i=1 ∈ X s : training examples from the

source domain, p ∈ 1, 2, · · · , Ns ; (xi, yi)|N t

i=1 :
the labeled target domain training videos;

Output: Wt : the transferred target classifiers;
H,C: the optimal key segments of videos.

1 Train source domain classifier ws
p using Web images and

videos
2 repeat
3 Step 1: compute Wt with fixed K concepts.
4 for i = 1 to Nt do
5

(H∗
i , C

∗
i ) = argmax

Hi ,Ci

F(xi, yi ,Hi, Ci)

6

y∗i = argmax
yi

F(xi, yi ,H∗
i , C

∗
i )

7 end
8 Compute ∂W tRi(Wt) according to Eq. (18)
9 Update Wt using the cutting plane method proposed

in [35]
10 Step 2: compute K optimal concepts with fixed Wt

11 Compute C according to Quadratic Programming
method using the simplified Eq. (23).

12 until Convergence of objective function Eq. (8) cannot be
decreased below tolerance δ

of Average Precision (mAP) for binary classification [8] is ap-
plied for performance evaluation.

A. Datasets

The CCV dataset contains 9,317 Youtube videos over 20
event categories with a training set of 4,659 videos and a test set
of 4,658 videos. Since our work focuses on event detection, the
object/scene categories such as “bird”, “beach”, “cat”, “dog”
and “playground” are discarded. Finally, 15 event categories are
utilized in our experiments.

The TRECVID MED2014 dataset contains 40 categories
of events. The partition of “Background” contains 4,983 back-
ground videos which do not belong to any events and can be
used as negative examples in the training procedure. The parti-
tions of “10EX” and “100EX” respectively consist of 10 and 100
positive videos for each of the pre-defined 20 event classes. In
our experiment, the setting of “10EX” and “100EX” are adopted.
The partition of “MEDTest” contains 29,200 videos, in which
there are about 25 positive samples for each event class and
26717 negative videos. Fig. 4 shows several examples of the
frames from the test videos on the CCV and the MED2014
datasets, respectively.

The Self-Collected Image and Video Dataset is constructed
by the videos collected from the Youtube Website and the im-
ages collected from the Google and Flickr Websites. First, we
query about 4,000 images (200 images per class) from the Flickr
Website and 600 videos (30 videos per class) from the Youtube
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Fig. 4. Examples of the frames from the test videos on the CCV dataset and the MED2014 dataset.

website by using the name of event class as search keywords.
Then, the associated tags and description sentences of the
queried images and videos are collected to construct the pre-
liminary concept pool. To guarantee the adequency of the train-
ing data for each concept, we re-search about 40,000 images
and 1000 videos based on the concept pool from the Google
website and the Youtube website, respectively. Finally, for each
concept, there are 200 images and 50 videos collected from the
Web source.

B. Experiment Setup

1) Visual Features: The visual description of an im-
age/frame is represented by a 4096-dimensional CNN feature
vector which is the output of the 16-layer VGG model [38]
implemented by Caffe toolkit [33]. Each image/frame is scaled
to 256 × 256, and cropped to a random 227 × 227 region. The
length of each clip is 10 seconds and there is 5 seconds over-
lap between two adjacent video clips. For a video segment,
we first extract the improved dense trajectory (IDT) [34], and
compute three descriptors (i.e. Histogram of Gradients (HOG),
Histogram of Optical Flow (HOF), and Motion Boundary His-
togram (MBH)) of IDT. Then a local descriptor encoding
method called Vector of Locally Aggregated Descriptors [6],
[39] is used to encode the three descriptors as the visual feature
of the video segment.

2) Concept Classifiers: In this experiment, 120 concepts are
automatically discovered by using the methods in the Section III.
After collecting the images and videos from Web, there are about
500 images and 20 videos in the training dataset for each con-
cept. These images and videos are treated as positive samples,
while the negative samples are constructed by randomly se-
lecting images and videos from the training datasets of other
concepts. The proportion of the positive and negative samples
is set to 1:5. We use the LIBSVM toolkit [40] with the linear
kernel to learn the concept image and video classifiers. The
5-fold cross-validation is utilized to choose the parameter of
regularization coefficient C in the SVM.

3) Related Methods: We compare our method with several
related methods on both the CCV dataset and the MED2014
dataset, such as the target domain SVM (SVM_T), Domain
Adaptive SVM (DASVM) [41], Domain Adaptation Machine
(DAM) [42], and Domain Selection Machine (DSM) [18].
SVM_T is trained on the limited number of the training videos
we utilize in our method. DASVM is a single domain method in
which the images and videos are gathered together as a single
domain. Both DAM and DSM are multi-source domain adap-
tation methods where the training samples belonging to each
concept are treated as a single domain.

In the respect of event detection with key segments, our
method is compared with Dynamic Pooling with Segment
Pairs (DPSP) [23], Evidence Localization Model (ELM) [5],
and Joint Event Detection and Recounting (JEDaR) [24] on
the MED 2014 dataset. Additionally, we compare the proposed
method with TagBook [43], VideoStory [44], and Fusion for
Visual Recognition (RFVR) [45] on the CCV dataset. DPSP
and ELM both dynamically locate the key segments of videos
for event detection. JEDaR simultaneously detects high-level
events and localizes the indicative concepts of the events. We
compare these three methods on the MED2014 dataset. TagBook
and VideoStory propose to learn the semantic video representa-
tion for event detection. RFVR models the dependency based on
probabilistic properties of posteriors without any assumption on
the data distribution for visual recognition. These three methods
are tested on the CCV dataset.

C. Results

1) Comparison With Related Methods: Tables I–III list
the per-class average precision of different methods on the
TRECVID MED 2014 EK100, EK10 and CCV datasets, re-
spectively. It is obvious that our approach performs better than
other related methods. With analysis into more details, we have
the following observations:

1) When compared with the SVM_T, our method achieves
superior results which verifies the advantage of exploiting
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TABLE I
THE RESULTS (%) OF THE METHODS ON TRECVID MED2014 EK100 DATASET

Event SVM_T DASVM [41] DAM [42] DSM [18] Ours

Attempting a bike trick 8.2 9.56 5.04 8.6 21.24
Cleaning an appliance 1.56 18.6 11.45 12.72 8.52
Dog Show 25.4 35.6 30.9 56.6 52.56
Giving directions to a location 2.68 6.8 4.82 4.24 4.21
Marriage proposal 0.32 5.6 5.3 1.15 11.82
Renovating a home 3.85 4.3 6.8 2.48 9.92
Rock climbing 8.6 17.3 23.8 14.5 24.51
Town hall meeting 18.54 33.8 30.2 21.76 25.64
Winning a race without a vehicle 16.82 19.3 35.32 8.48 38.62
Working on a metal crafts project 8.64 8.1 12.6 8.82 13.2
Beekeeping 55.15 60.8 57.13 72.1 74.36
Wedding shower 22.45 20.36 18.49 25.1 26.83
Non-motorized vehicle repair 36.46 44.89 33.64 43 40.26
Fixing musical instrument 22.92 28.45 18.54 28.3 24.61
Horse riding competition 30.22 27.27 28.53 50.2 52.38
Felling a tree 16.47 13.62 16.01 16.3 22.96
Parking a vehicle 28.63 20.74 26.31 17.8 67.28
Playing fetch 6.76 5.17 14.27 13.2 28.53
Tailgating 18.28 19.36 10.58 29.6 62.35
Tuning musical instrument 6.83 4.8 6.8 4.08 15.88
mAP 16.94 20.22 19.83 22.95 31.29

TABLE II
THE RESULTS (%) OF THE METHODS ON TRECVID MED2014 EK10 DATASET

Event DPSP [23] ELM [5] JEDaR [24] Ours

Attempting a bike trick 11.24 14.75 19.53 18.62
Cleaning an appliance 2.72 7.54 8.77 6.37
Dog Show 30.75 41.29 46.26 48.93
Giving directions to a location 3.12 3.16 3.98 3.28
Marriage proposal 0.87 1.12 1.27 5.93
Renovating a home 4.85 5.88 6.23 7.86
Rock climbing 12.56 13.96 15.62 20.67
Town hall meeting 20.82 25.25 27.41 23.46
Winning a race without a vehicle 14.82 17.84 19.63 30.84
Working on a metal crafts project 13.65 15.92 15.26 12.6
Beekeeping 61.82 67.85 69.41 68.36
Wedding shower 24.64 27.43 28.28 22.51
Non-motorized vehicle repair 41.47 46.54 46.27 35.72
Fixing musical instrument 27.83 29.78 31.63 22.84
Horse riding competition 38.86 42.86 45.32 48.86
Felling a tree 15.28 16.52 19.27 20.49
Parking a vehicle 37.8 47.81 49.25 56.48
Playing fetch 0.78 1.14 1.43 17.73
Tailgating 23.22 28.72 30.58 47.37
Tuning musical instrument 16.54 15.83 18.62 12.46
mAP 20.47 23.56 25.21 26.57

the key segments for event detection as well as automat-
ically discovering concepts for event description in our
framework.

2) When compared with DASVM, DAM, DSM, Videostory,
Tagbook and RFVR, our method performs better. It is
possible that our method mainly focuses on detecting the
key segments to classify the complex videos with the ben-
efit of efficiently investigating the underlying structural
information of videos for the recognition task.

3) Our method outperforms the segment-based methods of
DPSP, ELM and JEDaR on the MED 2014 dataset, which
validates that it is beneficial to transfer the knowledge

learned from Web resources to the target videos for im-
proving the accuracy of event detection model.

4) Our method also achieves better results on the TRECVID
EK10 dataset, which validates the effectiveness of our
method on few-shot learning.

5) For most of the events such as “marriage proposal”, “bee-
keeping”, “baseball” and “birthday”, our method obtains
significant results owing to the discovered discriminative
and descriptive key segments in detecting videos. For
some events of “giving direction to a location”, “fixing
musical instrument” or “tuning musical instrument”, our
method performs a little worse, the possible reason is that
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TABLE III
AVERAGE PRECISION (%)OF PER-CLASS PERFORMANCE ON CCV OF DIFFERENT METHODS

Event SVM_T DASVM [41] DAM [42] DSM [18] Videostory [44] Tagbook [43] RFVR [45] Ours

Basketball 46.82 42.33 36.59 46.28 55.3 63.3 77.21 70.21
Baseball 51.91 55.8 52.70 50.98 29.9 59.4 56.3 66.5
Soccer 45.13 46.59 48.82 51.60 50.5 57.4 64.4 67.84
Ice-Skating 38.91 41.88 41.69 45.84 67.5 72.2 87.46 82.65
Skiing 75.63 83.17 77.90 77.63 67.1 79.6 77.83 84.34
Swimming 65.10 87.04 71.93 85.93 76.4 76.2 76.29 85.4
Biking 45.28 48.65 45.11 47.42 56.1 62.1 48.79 57.9
Graduation 14.55 14.61 16.46 12.47 12.1 29.0 49.81 42.68
Birthday 16.96 15.91 26.67 13.98 25.7 49.2 46.91 51.2
Reception 11.97 13.84 15.91 21.38 11.7 19.6 36.1 38.5
Ceremony 28.16 35.63 44.57 46.29 32.4 45.4 55.59 58.46
Dance 49.97 56.11 52.44 58.23 52.1 50.3 60.05 57.8
Music 49.05 56.396 51.79 58.90 20.1 38.5 34.33 56.5
Non-Music 24.55 32.3 25.7 43.3 28.2 28.9 72.09 59.8
Parade 15.47 18.63 23.24 27.78 63.4 52.1 67.75 72.1
mAP 38.63 43.16 42.00 45.82 43.23 52.21 60.73 63.46

TABLE IV
THE RESULTS OF DIFFERENT COMPONENTS ON COMPLEX EVENT DETECTION MODEL

Dataset LEM TRM SEIM w/o LEM w/o TRM w/o SEIM λ1 = 0 λ2 = 0 Ours

CCV 50.74 15.43 11.84 18.6 56.81 62.38 15.64 60.53 63.46
MED2014 (EK10) 18.76 3.98 2.63 6.84 22.63 25.59 3.63 22.48 26.57
MED2014 (EK100) 23.68 4.85 2.92 7.92 25.58 28.85 5.21 28.68 31.29

TABLE V
THE RESULTS OF DIFFERENT COMPONENTS IN THE PROCEDURE OF AUTOMATIC CONCEPT DISCOVERY

Dataset w/o NAPSAC w/o Cluster w/o Text w/o Visual Ours

CCV 50.73 47.76 59.28 32.83 63.46
MED2014(EK10) 16.54 12.38 22.83 5.67 26.57
MED2014(EK100) 25.36 20.38 28.47 12.41 31.29

Fig. 5. The changes of mean average precision (%) with the radiuses in the
procedure of eliminating noisy images.

it is difficult to describe these events with informative
concepts.

2) Analysis of Different Components on Event Detection
Model: We investigate the effects of each component and each
constraint in Eq. (8). As given in Table IV, “w/o LEM”, “w/o

Fig. 6. The changes of mean average precision (%) with the radiuses in the
procedure of hierarchical clustering.

TRM” and “w/o SEIM”, indicate the methods of removing the
low-level event model, removing the temporal model, and re-
moving the concept event joint model, respectively. “λ1 = 0”
and “λ2 = 0” indicate the methods of removing the constraints,
respectively. It is interesting to notice that: (i) When discard-
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Fig. 7. The key segments (bright color) in videos (blue color) of several events we extracted in our experiment.

ing the LEM model, the detection performances significantly
degrade on both the MED 2014 and the CCV datasets, which
clearly demonstrates the importance of utilizing the low-level
feature representation to train the discriminative concept classi-
fiers for key segments detection. (ii) The performance is obvi-
ously improved when integrating either the TRM model or the
SEIM model, because either the temporal relationship between
different concepts or the context relationship between concepts
and specified events is helpful for selecting more discriminative
and descriptive concepts for event videos with filtering out the
unreasonable and inaccurate concepts. (iii) The mAP decreases
when either of the constraints is removed from Eq. (8), which
confirms that the contributions of the selected concepts in the
specified event are close and the correlations between the target
training samples provide effective information to train the target
classifier.

3) Analysis of Different Components on Automatic Concept
Discovery: Table V lists the results of different components
on automatic concept discovery, where “w/o NAPSAC” and
“w/o Cluster” respectively represent the methods of excluding
the NAPSAC procedure and the hierarchical clustering method

in the concept discovery model. “w/o Text” and “w/o Visual”
indicate the methods of excluding the text similarity and the
visual similarity in hierarchical clustering separately. From the
results, we can observe that (i) NAPSAC is very important to
find the discriminative concepts by filtering out those noisy
videos and images. (ii) The hierarchical clustering of the text
description of the concepts as well as the images and videos
belonging to each concept is capable of improving the detection
accuracy as the hierarchical clustering method could cluster the
similar concepts which are similar in text description or visual
representation into one new concept. Additionally, during the
clustering, it is essential to employ both the textual and visual
information of images and videos to measure the similarity
between two samples.

4) Evaluations on Different Radiuses in Automatic Concept
Discovery: Fig. 5 shows the mean average precision (mAP)
of different radiuses for eliminating noisy Web images/videos
in automatic concept discovery. The parameter of radius deter-
mines the number of relative images/videos in each concept.
As shown in Fig. 5, the radius is set to 1 and 1.1 on the CCV
and the MED2014 datasets, respectively, to achieve the best
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performance. When the radius becomes lower or higher from
the best value, the mAP will obviously decrease. The possible
explanation is that when the radius is smaller, there will be not
enough relative training examples to be clustered of each new
concept, this will cause over-fitting of the concept classifiers.
When the radius is larger, there will be more noisy images and
videos in the concept, and the training data from each concept
may lose the discriminability.

In Fig. 6, we illustrate the performances of different values
of radius for hierarchical clustering of concepts in automatic
concept discovery. This radius measures the text similarity of
the textual description and the visual similarity of the videos
and images belonging to each concept. Once either similarity
has reached the radius, the two corresponding concepts will
be clustered to generate one new concept. In the CCV and the
MED2014 datasets, the best value of radius is 0.55 with the
highest detection accuracy. When the radius becomes smaller,
the similar concepts may be ignored to be together. On the con-
trary, when the radius becomes larger, more irrelevant concepts
will aggregate into one cluster. In both of these two cases, the ac-
curacy of concept classifiers will degrade resulting in the worse
performance of the event detection model.

5) Key Segments of Videos for Event Detection: The seg-
mentation results of several events have been shown in Fig. 7. In
Fig. 7, four segments of “knee down”, “stand opposite”, “hug”,
and “kiss” are detected in the event of “marriage proposal”. For
other events, we could also detect each four segments in the
same way. The segmentation of videos makes event detection
more meaningful and practical.

VII. CONCLUSION

In this paper, we have proposed a framework of automatically
detecting key segments for event detection by leveraging loosely
labeled Web sources and a limited number of consumer videos.
A discriminative model is presented for complex event detec-
tion by using an adaptive latent structural SVM model, where
the locations of key segments are regarded as latent variables.
The NAPSAC and hierarchical clustering are combined to auto-
matically construct more meaningful concepts which are treated
as the semantic descriptions of the key segments and the tempo-
ral information of concepts is exploited to capture the temporal
relations between segments. The experimental results on the
Columbia’s Consumer Video dataset and the TRECVID2014
Multimedia Event Detection dataset demonstrate the effective-
ness of our method.
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