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Abstract This paper addresses the challenging problem
of complex human activity understanding from long videos.
Towards this goal,we propose a hierarchical description of an
activity video, referring to the “which” of activities, “what”
of atomic actions, and “when” of atomic actions happening
in the video. In our work, each complex activity is char-
acterized as a composition of simple motion units (called
atomic actions), and different atomic actions are explained
by different video segments. We develop a latent discrim-
inative structural model to detect the complex activity and
atomic actions, while learning the temporal structure of
atomic actions simultaneously. A segment-annotation map-
ping matrix is introduced for relating video segments to
their associational atomic actions, allowing different video
segments to explain different atomic actions. The segment-
annotation mapping matrix is treated as latent information in
the model, since its ground-truth is not available during both
training and testing. Moreover, we present a semi-supervised
learning method to automatically predict the atomic action
labels of unlabeled training videos when the labeled training
data is limited, which could greatly alleviate the laborious
and time-consuming annotations of atomic actions for train-
ing data. Experiments on three activity datasets demonstrate
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that our method is able to achieve promising activity recog-
nition results and obtain rich and hierarchical descriptions of
activity videos.

Keywords Activity understanding · Hierarchical video
description · Atomic action · Latent structural model

1 Introduction

Understanding human activities in videos has been exten-
sively studied for wide applications such as intelligent sur-
veillance, human computer interaction, content-based video
annotation, and video retrieval. Many previous methods
(Laptev 2005; Li et al. 2008; Liu et al. 2011; Sadanand and
Corso 2012; Yu et al. 2012) focus on the recognition of pre-
segmented short videos containing simple and well-defined
actions such as running, boxing, and walking. In practice,
real-world videos are often of longer length, and containmul-
tiple motions happening at different specific moments and
places. Some recent literatures (Niebles et al. 2010; Gaidon
et al. 2011; Tang et al. 2012; Izadinia and Shah 2012; Wang
et al. 2013b) go beyond the single-label action recognition
and deal with understanding more complex activities from
long videos.

We focus on understanding and describing complex activ-
ities in long videos. The activities are composed of a set
of key motion units with simple semantic information, that
are referred to as atomic actions. For example, the atomic
actions of the “triple-jump” activity include: “run-up”, “hop
and bound”, and “jump into sand pit”. Due to the fact
that different activities have different sequences of differ-
ent atomic actions, it is beneficial to explore the relationship
between activities and atomic actions as well as the temporal
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structure of atomic actions to automatically analyze complex
activities.

In this paper, we propose to interpret an activity video
into a hierarchical description referring to the “which” of
activities, “what” of atomic actions, and “when” of atomic
actions happening in the video. A novel latent discriminative
structural model is developed to capture the intrinsic rela-
tionship among high-level activity class, mid-level atomic
actions, and low-level video segments. The relationship
between video segments and atomic action annotations is
represented by a segment-annotation mapping matrix which
assigns video segments to the atomic actions. The segment-
annotation mapping matrix is treated as latent information in
our model, since its ground-truth is not available during both
training and testing. The training data to learn the discrimi-
native model is a set of videos with their associated activity
labels and atomic action annotations. In the training stage, the
model jointly learns the detectors of atomic actions, the over-
all templates of activities, and the correlationmatrix between
activities and annotations. For the purpose of learning accu-
rate temporal structure of atomic actions, we enforce the
consistencybetween the segment-annotationmappingmatrix
and the prior temporal distribution of atomic actions. In the
testing stage, the model simultaneously predicts the activity
label and the atomic action annotations for a video, and also
localizes the predicted atomic actions in time direction via the
inferred segment-annotation mapping matrix. Furthermore,
in order to alleviate the laborious and time-consuming anno-
tations of atomic actions for training videos, we introduce
a semi-supervised method which allows part of the training
videos only annotated with activity labels and automatically
annotates these training videoswith atomic action labels. The
overview of our method is illustrated in Fig. 1.

The main contributions of this work include: (1) a hierar-
chical description of complex activities based on “which”
activities, “what” atomic actions, and “when” of atomic
actions happening in the video, (2) a novel latent discrim-
inative structural model which jointly performs the detection
of atomic actions, the temporal localization of atomic actions,
and the classification of overall activity, and (3) a semi-
supervised learning method to automatically annotate the
training videos with atomic action labels when the training
data are partly atomic-action labeled.

2 Related Work

Most existing literatures of human activity analysis focus on
the problem of classifying a short video containing a sim-
ple action. A lot of approaches (Efros et al. 2003; Yilmaz
and Shah 2005; Gorelick et al. 2007; Rodriguez et al. 2008;
Li et al. 2008) employ global space-time representations
extracted from image sequences. Recently, many standard

action recognition methods (Laptev 2005; Dollar et al. 2005;
Wang et al. 2013a; Le et al. 2011; Wu et al. 2011; Yu
et al. 2012) adopt local spatio-temporal feature representa-
tions and achieve impressive results. All the above methods
directly establish the mapping from low-level visual features
to high-level label information and consequently have innate
limitations in semantic description of complex activities in
terms of multiple atomic actions.

Some recent literatures have investigated detecting and
modeling low-level atomic actions to recognize complex
activities. In (Laxton et al. 2007), the hierarchical complex
activity model takes input from low-level actions detectors,
andmanual annotations of actions for each frame are required
to learn these detectors. In (Izadinia and Shah 2012), the
detectors of low-level events are learned from training video
clips, and the co-occurrence relationship between different
low-level events is modeled in a latent discriminative frame-
work. Each video is divided into several short clips and each
clip is manually annotated using one low-level event label
for training the low-level detectors. Sun and Nevatia (2013)
defined a set of activity concepts to encode the activity con-
cept transitions over time for describing a video event. But
theirmethod requiresmanual annotations of activity concepts
for each clip. Felzenszwalb et al. (2010) presented a rep-
resentation capturing the temporal dynamics of windowed
mid-level concept detectors for improving complex event
recognition. And they employed human annotators to mark
the approximate beginning and ending frames of the con-
cepts in videos to pre-train the concept detectors. Lillo et al.
(2014) developed a hierarchical model based on pose eval-
uation for recognizing complex activities from RGBD data,
and their work need to manually annotate action classes for
each frame. In contrast, our method does not need themanual
annotation of video segments to learn the atomic action detec-
tors. We integrate the detection of atomic actions, temporal
localization of atomic actions, and classification of overall
activity into a unified framework. Gaidon et al. (2011) rep-
resented the temporal structure of activities as a sequence
of histograms of atomic action-anchored visual features, and
detected atomic actions in an input activity video based on
the prior distributions of atomic actions. Hoai et al. (2011)
presented a multi-class SVM based discriminative model
for simultaneously performing temporal segmentation and
event recognition, and they found the optimal segmentations
and atomic action labels of a long video by using dynamic
programming. Different from (Gaidon et al. 2011) which
annotates time stamps of atomic action clips for training and
(Hoai et al. 2011) which assigns a particular class label for
each frame, our method does not require the temporal anno-
tations of atomic actions in training. And what we need is
only the semantic concept annotations of atomic actions for
training.
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Fig. 1 Overview of the proposed method. During training, our model
takes a set of videoswith activity labels and atomic action annotations as
input. The proposed model jointly learns the relationship among high-
level activities, mid-level atomic actions, and low-level video segments.
For a new video, the model is able to predict the activity label, anno-

tate the atomic actions, and build the mapping between atomic actions
and video segments. We introduce a semi-supervised method which
allows part of the training videos only annotated with activity labels
and automatically annotates these training videos with atomic action
labels (Color figure online)

Niebles et al. (2010) utilized a set of motion segment clas-
sifiers tomodel a complex activity. The classification is based
on the quality of matching between motion segment classi-
fiers and temporal segments in the input video by optimizing
the temporal positions of motion segment classifiers. The
motion segments are not enough for semantic representa-
tion, and our method does well in conceptual description of
activities by using atomic actions. Moreover, we describe
the temporal structure of activities by the mapping matrix
between video segments and atomic actions.

Tang et al. (2012) modeled an event by a set of latent
state variables and duration variables, and introduced a max-
margin based discriminative model to learn the temporal
structure of complex events. In their work, the latent states
are actually the cluster centers of video clips from training
samples. Wang et al. (2013b) decomposed a complex action
into a series of motion atoms which are discovered through
clustering. Amotion atom captures a simplemotion in a short
temporal scale, and can be considered as an atomic action.
Pirsiavash andRamanan (2014) parsed long videos of actions
with segmental grammars to model the hierarchical tempo-
ral structure of sub-actions. Wang et al. (2014) developed a
latent hierarchical model to decompose an complex activ-
ity into sub-activities in a hierarchical way. Hu et al. (2014)
presented a hidden CRF model for predicting the underlying
sub-activity labels of actionvideos.The abovemethods (Tang
et al. 2012;Wang et al. 2013b; Pirsiavash andRamanan 2014;

Wang et al. 2014; Hu et al. 2014) model the hierarchical
structure of complex activities by introducing the data-
driven generated states, atoms, and sub-activities. Different
from these work, our method can achieve a more reason-
able and logical description of complex activities owing
to the available concept annotations of atomic actions in
training.

3 Our Model

3.1 Model Formulation

We develop a discriminative structural model with latent
variables for jointly capturing the relationship among video
segments, atomic action annotations, and overall activity
labels. The training data for learning the model are a set
of triples {(xn, yn,hn)|n = 1, 2, . . . , N }, where xn repre-
sents the n-th training video which is initially partitioned
into several segments, yn is the activity label of xn , and
hn = [hn1, hn2, . . . , hnV ] indicates the atomic action anno-
tations (hni = 1 if the i-th atomic action is present in the
video xn , and hni = 0 otherwise). The mapping matrix
between video segments and atomic action annotations is
treated as latent information in themodel.With a set of unob-
served latent variables {gn}, n = 1, 2, . . . , N , where gn is the
segment-annotation mapping matrix of xn , our learning goal
is to learn a prediction rule of the following form:
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fw(x) = max
y,h,g

F(x, y,h, g)

= max
y,h,g

w�Φ(x, y,h, g),
(1)

where Φ(x, y,h, g) is a joint feature vector that describes
the relationship among the activity video x, the activity
label y, the atomic action annotations h, and the latent
segment-annotation mapping matrix g. The optimization
problem in Eq. 1 is typically referred to as the “inference”
or “recognition” problem. Detailed explanation of g and
w�Φ(x, y,h, g) will be illustrated in Sects.3.1.1 and 3.1.2,
respectively.

3.1.1 Mapping Video Segments to Atomic Action
Annotations

Given an activity video x and its atomic action annotation
h, we first partition x into R segments in time series: x =
[x1, x2, . . . , xR]. Then we interpret the interaction between
video segments and atomic action annotations by assum-
ing an unobserved many-to-one mapping which relates R
video segments to each of the present atomic actions. Specif-
ically, we introduce a matrix g = {gi j , i = 1, 2, . . . , R, j =
1, 2, . . . , V } to translate R segments to V atomic actions,
where gi j = 1 if the i-th video segment is mapped to the
j-th atomic action label, and 0 otherwise.
We do not access to the ground-truth of g, but infer it dur-

ing both training and testing stages. In order to reduce the
searching space of g, we make the following constraints on
the relationbetweeng andh: (1) eachvideo segment is related
to at most one annotation term to guarantee that a video seg-
ment can not be used to relate more than one annotations; (2)
each present atomic action is related to one or more video
segments to ensure that for each atomic action assigned to
a video, there is at least one video segment explaining it ;
(3) each absent atomic action is not related to any video seg-
ments to make sure that if an atomic action is not assigned
to a video, there are no video segments mapped to it. These
constraints are formalized by

∑

j

gi j ≤ 1,∀i; max
i

gi j = h j ,∀ j; gi j ∈ {0, 1},∀i,∀ j.

(2)

3.1.2 Relationship Among Video Segments, Atomic Action
Annotations, and Activity Label

We formulate the relationship among video segments, atomic
action annotations, and activity label as

w�Φ(x, y,h, g) = α�φ(x, g) + β�ψ(x, y) + γ �ϕ(h, y).

The model parameter w is given by w = {α;β; γ }. The
details of each term are described below.

Interaction Function Between Video Segments and
Atomic Action Annotations α�φ(x, g). This interaction
function captures the compatibility of mapping video seg-
ments to the atomic actions, parameterized by

α�φ(x, g) =
R∑

i=1

V∑

j=1

α�
j · xi · gi j ,

whereα j represents a template for predicting avideo segment
to take the j-th atomic action label, and xi is the visual feature
vector extracted from the i-th video segment. Due to the
constraint maxi gi j = h j defined in Eq. 2, the definition of
this function involves g instead of h.

Compatibility Function Between Video and Activity
Label β�ψ(x, y). This compatibility function is a standard
linear function learned to predict the overall activity label
y for video x, without considering multiple atomic actions,
parameterized by

β�ψ(x, y) = β�
y · x,

where x is the feature extracted from the entire video and βy

represents a template for activity class y.
Correlation function between atomic action annota-

tions and activity label γ �ϕ(h, y). There is a meaningful
relationship between multiple atomic actions and the over-
all activity. For example, a certain number of atomic actions
such as “run-up” and “throw” often happen in a particular
activity “javelin-throw”, but may not occur in other activities
such as “snatch” and “tennis-serve”. Therefore, it is benefi-
cial to incorporate a correlation function between an activity
label y and atomic action annotations h, which is defined by

γ �ϕ(h, y) =
V∑

j=1

[γ y
j,1 · h j + γ

y
j,0 · (1 − h j )],

where γ
y
j,1 represents a template for the j-th atomic action

to be present if the activity class is y, while γ
y
j,0 denotes a

template for the j-th atomic action to be absent if the activity
class is y.

3.2 Model Training

Given a set of N training samples {(xn, yn,hn)}, n =
1, 2, . . . , N , our goal is to learn themodel parameterw. Since
the segment-annotation mapping matrix g is unobserved and
hence treated as a latent variable during training, we adopt
the Latent Structural SVM framework (Felzenszwalb et al.
2010; Yu and Joachims 2009) by formulating the following
optimization problem:
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min
w,ξn

1

2
‖w‖2 + C

N∑

n=1

ξn (3)

s.t. max
gn

[w�Φ(xn, yn,hn, gn)

−C ′
R∑

i=1

V∑

j=1

R∑

k=1

V∑

l=1

gni j · gnkl · ρ(i, j, k, l)]

−max
g

w�Φ(xn, y, h, g)

≥ �((yn, hn), (y, h)) − ξn, ∀n, ∀y, ∀h, (4)

where ρ(i, j, k, l) is a penalty function for the co-occurrence
of gni j and gnkl , and �((yn,hn), (y,h)) is a loss function
measuring the cost incurred by predicting the ground-truth
(yn,hn) as (y,h). Here we utilize a simple Hamming loss:
�((yn,hn), (y,h)) = �(yn, y) + ∑V

j=1 �(hnj , h j ) , where
�(a, b) is 1 if a 	= b and 0 otherwise.

The constraints inEq. 4 canbe explained as follows: for the
n-th training sample, the score maxgn [w�Φ(xn, yn,hn, gn)
−C ′ ∑R

i=1
∑V

j=1
∑R

k=1
∑V

l=1 g
n
i j · gnkl · ρ(i, j, k, l)] that is

associated with the ground-truth activity label yn and atomic
action annotations hn should be no less than the score
maxg w�Φ(xn, y,h, g) that is associated with any hypothe-
sized activity class label y and atomic action annotations h.
Here,

∑R
i=1

∑V
j=1

∑R
k=1

∑V
l=1 g

n
i j · gnkl · ρ(i, j, k, l) enfor-

ces the consistency between themapping gn and the temporal
distribution of atomic action annotations by using the penalty
function ρ(i, j, k, l). For example, in the activity “triple-
jump”, the atomic action “run-up” appears before the atomic
action “jump into sand pit”, thus the video segments inter-
preting “run-up” should be ahead of that interpreting “jump
into sand pit”. The penalty function ρ(i, j, k, l) is defined as

ρ(i, j, k, l) =
{

η jl · sgn(i − k), i f η jl · sgn(i − k) > 0

0, i f η jl · sgn(i − k) ≤ 0

where η jl ∈ [−1, 1] represents the possibility of atomic
action j happening before atomic action l, and sgn(i − k)
indicates the temporal relation of segment i and segment k.
In our implementation, η jl is set to be -1, 0, or 1 according to
prior knowledge. Particularly, η jl = 1 represents that atomic
action j appears before atomic action l, η jl = −1 indicates
that atomic action j appears after atomic action l, and η jl = 0
means that the temporal order of atomic action j and atomic
action l is indefinite. If η jl ·sgn(i−k) > 0, the temporal rela-
tion of segment i and segment k is inconsistent with the prior
temporal distribution of atomic action j and atomic action l
indicated in η jl , therefore, the co-occurrence of gni j and gnkl
is punished with ρ(i, j, k, l).

Since ξn is equivalent to
{
max
y,h,g

(�((yn,hn), (y,h)) + w�Φ(xn, y,h, g))

− max
gn

[w�Φ(xn, yn,hn, gn)

−C ′
R∑

i=1

V∑

j=1

R∑

k=1

V∑

l=1

gni j · gnkl · ρ(i, j, k, l)]
⎫
⎬

⎭

=max
y,h,g

(�((yn,hn), (y,h)) + w�Φ(xn, y,h, g))

+ min
gn

⎡

⎣C ′
R∑

i=1

V∑

j=1

R∑

k=1

V∑

l=1

gni j · gnkl · ρ(i, j, k, l)

−w�Φ(xn, yn,hn, gn)

⎤

⎦ ,

(5)

we can rewrite the constrained optimization problem in Eq. 3
as an unconstrained problem:

min
w

1

2
‖w‖2 + C

N∑

n=1

(Ln + Rn),

Ln = max
y,h,g

(�((yn,hn), (y,h)) + w�Φ(xn, y,h, g)),

Rn = min
gn

⎡

⎣C ′
R∑

i=1

V∑

j=1

R∑

k=1

V∑

l=1

gni j · gnkl · ρ(i, j, k, l)

− w�Φ(xn, yn,hn, gn)

⎤

⎦ ,

(6)

where Ln + Rn = ξn .
We employ the non-convex bundle optimization method

(NRBM) in Do and Artieres (2009) to solve Eq. 6. Specif-
ically, this optimization algorithm iteratively builds an
increasingly accurate piecewise quadratic approximation of
Eq. 6 and converges to an optimal solution of w, which
requires the calculation of the subgradient of Ln + Rn . Sup-
pose (y�,h�, g�) be the solution to the optimization problem

max
y,h,g

�((yn,hn), (y,h)) + w�Φ(xn, y,h, g) (7)

and g† be the solution to the optimization problem

min
gn

⎡

⎣C ′
R∑

i=1

V∑

j=1

R∑

k=1

V∑

l=1

gni j · gnkl · ρ(i, j, k, l)

−w�Φ(xn, yn,hn, gn)

⎤

⎦ ,

(8)

then ∂w(Ln + Rn) can be calculated by Φ(xn, y�,h�, g�) −
Φ(xn, yn,hn, g†). To solve the optimization problem in
Eq. 7, we first enumerate all the possible values of y and
then deal with the inner maximization over h and g for a
fixed y:
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max
h,g

�((yn,hn), (y,h)) + w�Φ(xn, y,h, g)

⇔max
h,g

�(yn, y) +
V∑

j=1

�(hnj , h j ) +
R∑

i=1

V∑

j=1

α�
j xi gi j

+ β�
y x +

V∑

j=1

[
γ
y
j,1h j + γ

y
j,0(1 − h j )

]

⇔max
h,g

�(yn, y) + β�
y x +

R∑

i=1

V∑

j=1

α�
j xi gi j

+
V∑

j=1

[
�(hnj , h j ) + γ

y
j,1h j + γ

y
j,0(1 − h j )

]

(9)

where �(yn, y)+β�
y x is constant for a fixed y, and �(hnj , h j )

can be re-formulated as

�(hnj , h j ) =
{
1 − h j , i f hnj = 1

h j . i f hnj = 0

By adding the constraints in Eq. 2, the optimization prob-
lem in Eq. 9 can be rewritten as

max
h,g

R∑

i=1

V∑

j=1

ai j gi j +
V∑

j=1

b j h j

s.t.
∑

j

gi j ≤ 1, max
i

gi j = h j , gi j ∈ {0, 1}, ∀i,∀ j,

(10)

where ai j is formalized by ai j = α�
j · xi , and b j is defined

as

b j =
{

γ
y
j,1 − γ

y
j,0 − 1, if hnj = 1,

γ
y
j,1 − γ

y
j,0 + 1, if hnj = 0.

Since the optimization problem in Eq. 10 is non-convex, we
can relax its constraints and obtain an integer linear problem:

max
h,g

R∑

i=1

V∑

j=1

ai j gi j +
V∑

j=1

b j h j

s.t.
∑

j

gi j ≤ 1, gi j ≤ h j ≤
∑

i

gi j ,

gi j ∈ {0, 1}, h j ∈ {0, 1}, ∀i,∀ j.

(11)

Since the integral constraints gi j ∈ {0, 1} and h j ∈ {0, 1}
make the optimization problem NP-hard, we further relax
the integer values of h j and gi j to a real value in the range
of [0,1]. Finally, the integer linear problem in Eq. 11 can be
relaxed to a linear problem:

max
h,g

R∑

i=1

V∑

j=1

ai j gi j +
V∑

j=1

b j h j

s.t.
∑

j

gi j ≤ 1, gi j ≤ h j ≤
∑

i

gi j

0 ≤ gi j ≤ 1, 0 ≤ h j ≤ 1,∀i,∀ j.

(12)

After solving this problem,we round gi j to the closest integer
and obtain h j by h j = maxi gi j .

Similarly, the optimization problem in Eq. 8 can be solved
by the following quadratic program:

min
gn

C ′
R∑

i=1

V∑

j=1

R∑

k=1

V∑

l=1

gni j · gnkl · ρ(i, j, k, l)

−
R∑

i=1

V∑

j=1

ai j g
n
i j

s.t.
∑

j

gni j ≤ 1, gni j ≤ hnj ≤
∑

i

gni j , 0 ≤ gni j ≤ 1, ∀i,∀ j.

The complexity of computing Ln in Eq. 6 is O(R2V 2A)

and the complexity of computing Rn is about O(R4V 4),
where R is the number of video segments, V is the num-
ber of atomic actions, and A is the number of activities.
Therefore, the computation complexity of model training is
O((R4V 4A+ R4V 4)Nt ), where Nt indicates the number of
iterations in NRBM.

Latent Structural SVM has been successfully applied in
region-based image annotation (Wang andMori 2010) which
models the mapping between image regions and object tags
as latent information to understand the total scene from an
image. Different from this method, our method models the
temporal relationship between atomic actions and encour-
ages the latent mapping to be consistent with it.

3.3 Model Inference

Given the model parameter w = {α;β; γ }, the inference
problem is to simultaneously find the optimal activity label y
and atomic action annotations h for an input activity video.
The inference can be solved by the following optimization
problem:

(y∗,h∗) = argmax
y,h,g

w�Φ(x, y,h, g).

We enumerate all the possible activity labels y to find the
optimal y∗. For a fixed y, we can modify the optimization
problem in Eq. 12 by re-defining b j as b j = γ

y
j,1 − γ

y
j,0, and

adopt the similar linear program to find the final solution of
h. We can also obtain the optimized latent mapping matrix
g as a by-product. The computational complexity of model
inference is O(R2V 2A).
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4 Automatically Learning of Atomic Action
Annotations

4.1 Model Formulation

Our model is trained on videos annotated with activity labels
and atomic action annotations. However, it is laborious and
time-consuming to manually annotate atomic actions for
each video. Besides, it is hard to distinguish atomic actions in
some videos, and gathering atomic action annotations from
humans would be prone to noise. To deal with these prob-
lems, we resort to semi-supervised learning.

In our setting, both the activity and the atomic action anno-
tations are available for a portion of training videos, and the
rest training videos are only annotated with activity labels.
We introduce a semi-supervisedmethod to automatically pre-
dict atomic action labels of the rest of the training videos only
annotated with activity labels. Our method aims to learn a
discriminative compatibility function:

G(x, y,h) = w��(x, y,h),

where�(x, y,h) is a joint feature vector which describes the
relationship among the video x, the activity label y, and the
atomic action annotation h. The model parameter includes
two parts w = {λ;μ}. The relationship among a video x,
an activity label y, and the atomic action annotations h is
formulated as

w��(x, y,h) = λ�ψ1(x, y) + μ�ψ2(h, y),

λ�ψ1(x, y) =
A∑

t=1

λ�
t · x · It (y),

μ�ψ2(h, y) =
V∑

j=1

A∑

t=1

μt
j,1 · I1(h j ) · It (y)

+ μt
j,0 · I0(h j ) · It (y),

where λ�ψ1(x, y) measures the compatibility of a video x
and certain activity class y, and μ�ψ2(h, y) models the rela-
tionship between atomic action annotations h and the overall
activity y. Here, Ia(b) is an indicator function, namely,
Ia(b) = 1 if a = b, and 0 otherwise.

4.2 Learning Procedure

The training data of our model include a set of triples XL =
{(xn, yn,hn)|n = 1, 2, . . . , N } which are annotated with
both activity labelsyn and atomic action annotationshn , and a
set of two-tuples XU = {(xm, ym)|m = 1, 2, . . . , M} which
are only annotated with activity labels ym . Since the atomic
action annotations hm of videos in XU are not available, they
are regarded as latent variables. The model is formulated in
a latent structural SVM framework for learning:

minw,ξnL ,ξmU ,δm
1

2
‖w‖2 + C1

(
N∑

n=1

ξnL

+
M∑

m=1

ξmU

)
+ C2

M∑

m=1

δm (13)

s.t. w�Φ(xn, yn,hn) − w�Φ(xn, y,h)

≥ �((yn,hn), (y,h)) − ξnL ,∀xn ∈ XL ,∀y,∀h (14)

w�Φ(xm, ym,hm) − w�Φ(xm, y,h)

≥ �(ym, y) − ξmU ,∀xm ∈ XU ,∀y,∀h (15)

�(xm, ym,hm, XL , XU ) ≤ δm,∀xm ∈ XU . (16)

Equations 14 and 15 denote the max margin constraints for
data in XL and XU , respectively. These constraints optimize
the parameters by classifying training data correctly. Note
that, due to the non-available ground-truth of atomic action
annotations in XU , the loss function �(ym, y) only involves
the overall activity labels.

The constraints in Eq. 16 model the relationship among
atomic action annotations of different training videos, in
which �(xm, ym,hm, XL , XU ) is a loss function of assess-
ing the dissimilarity between atomic action annotations of xm

and the rest training videos. For simplicity, we only consider
the relationship among videos with the same activity label,
and define � as
�(xm, ym,hm, XL , XU ) =

∑

xk∈XL ;yk=ym

θ(xk,hk, xm,hm)

+
∑

xk∈XU ;yk=ym

θ(xk,hk, xm,hm),

θ(xk,hk, xm,hm) = 〈xk, xm〉· | hk − hm |,
(17)

where θ(xk,hk, xm,hm) is a pairwise cost function of anno-
tating video xk with hk and annotating video xm with hm .
〈xk, xm〉 measures the similarity between appearances of xk

and xm , and | hk − hm | indicates the Hamming distance
between hk and hm . Although our method allows videos
within the same activity class to be annotated with differ-
ent atomic actions, it is reasonable that videos with similar
appearances should also have similar atomic action annota-
tions.

We utilize the non-convex bundle optimization method
(NRBM) (Do and Artieres 2009) to solve Eq. 13. If we sub-
stitute Eqs. 14–16 into Eq. 13, the objective function can be
rewritten as
Q(w) = 1

2 ‖w‖2 + C1
∑

xm∈XU

max
y,h

[
w�Φ(xm , y,h) + �(ym , y)

]

+C1
∑

xn∈XL

{
max
y,h

[
w�Φ(xn, y,h) + �((yn,hn), (y, h))

]

−w�Φ(xn, yn,hn)
}

− max
h1:hM

[
C1

∑

xm∈XU

w�Φ(xm , ym , hm)

−C2
∑

xm∈XU

�(xm , ym ,hm , XL , XU )

]
.
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The subgradient of Q(w) required in each iteration of the
non-convex bundle optimization algorithm is given by

∂Q(w)

∂w
= w + C1

∑

xn∈XL

Φ(xn, yn∗,hn∗) − Φ(xn, yn,hn)

+ C1

∑

xm∈XU

Φ(xm, ym∗ ,hm∗ ) − Φ(xm, ym,hm),

(yn∗,hn∗) = argmax
y,h

[w�Φ(xn, y,h)

+ �((yn,hn), (y,h))],∀xn ∈ XL , (18)

(ym∗ ,hm∗ ) = argmax
y,h

[w�Φ(xm, y,h)

+ �(ym, y)],∀xm ∈ XU , (19)

{h1 : hM } = arg max
h1:hM

⎡

⎣C1

∑

xm∈XU

w�Φ(xm, ym,hm)

−C2

∑

xm∈XU

�(xm, ym,hm, XL , XU )

⎤

⎦ . (20)

In each iteration of the non-convex bundle optimization algo-
rithm, we need to solve the inference problems defined in
Eqs. 18 and 19, and the latent variables {h1 : hM } of all the
videos in XU are jointly inferred according to Eq. 20.

For a fixed activity label y, the inference problem of a
video xn ∈ XL defined in Eq. 18 can be relaxed to a linear
problem

argmax
h

V∑

j=1

b j h j ,

s.t. 0 ≤ h j ≤ 1,∀ j.

b j =
{

μ
y
j,1 − μ

y
j,0 − 1, if hnj = 1,

μ
y
j,1 − μ

y
j,0 + 1, if hnj = 0.

Similarly, for a fixed activity label y, the inference problem
of a video xm ∈ XU defined in Eq. 19 can be relaxed to a
linear problem:

argmax
h

V∑

j=1

(μ
y
j,1 − μ

y
j,0)h j ,

s.t. 0 ≤ h j ≤ 1,∀ j.

We employ dual decomposition in (Sontag et al. 2011) to
solve the challenging problem defined in Eq. 20. Substituting
Eq. 17 into Eq. 20, we get

{h1 : hM }

= arg max
h1:hM

⎧
⎨

⎩C1

∑

xm∈XU

w�Φ(xm, ym,hm)

−C2

∑

xm∈XU

⎡

⎣
∑

xk∈XL ;yk=ym

θ(xk,hk, xm,hm)

+
∑

xk∈XU ;yk=ym

θ(xk,hk, xm,hm)

⎤

⎦

⎫
⎬

⎭ (21)

= arg max
h1:hM

⎧
⎨

⎩
∑

xm∈XU

[C1w�Φ(xm, ym,hm)

−C2

∑

xk∈XL ;yk=ym

θ(xk,hk, xm,hm)]

−C2

∑

xm∈XU

∑

xk∈XU ;yk=ym

θ(xk,hk, xm,hm)
}

.

We define a graphical model G = {Ns, Es}, where
Ns = {hm |xm ∈ XU } and Es = {(hm1,hm2)|ym1 = ym2}
denote nodes and edges, respectively. Then Eq. 22 can be
re-formulated as a standard problem of dual decomposition:

{h1 : hM } = arg max
h1:hM

[
∑

hm∈Ns

τn(hm)

+
∑

(hm1,hm2)∈Es
τe(hm1,hm2)

]
,

(22)

where τn(·) is the energy function of a node, and τe(·) repre-
sents the energy function of an edge:

τn(hm) = C1w�Φ(xm, ym,hm)

− C2

∑

xk∈XL ;yk=ym

θ(xk,hk, xm,hm),

τe(hm1,hm2) = θ(xk,hk, xm,hm).

In order to solve the problem in Eq. 22 by dual decompo-
sition, we must reduce the state space of a latent variable
hm . If there are V atomic actions, the number of possible
atomic action annotations is 2V . However, most of them are
unreasonable annotations since some atomic actions (such as
“basketball dribble” and “jump into sand pit”) cannot appear
simultaneously. In the implementation, we reduce the state
space of latent variables by finding all the reasonable atomic
action annotations from dataset XL .

5 Experiments

5.1 Human Activity Datasets

To evaluate the effectiveness of ourmodel, we conduct exper-
iments on the three human activity datasets.

Synthesized Multi-view IXMAS Activity Dataset. We
construct a synthesized set of complex activities by concate-
nating simple actions from the multi-view IXMAS dataset
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Table 1 Synthesized complex
activity classes from the
multi-view IXMAS dataset. The
column of “Activity” indicates
the synthesized activity classes:
#1–#8 and the column of
“Atomic actions” represents the
concatenated simple action
classes from the IXMAS dataset

Activity Atomic actions

#1 Check watch, cross arms, scratch head, sit down, get up

#2 Cross arms, scratch head, sit down, get up, turn around

#3 Scratch head, sit down, get up, turn around, walk

#4 Sit down, get up, turn around, walk, wave

#5 Get up, turn around, walk, wave, punch

#6 Turn around, walk, wave, punch, kick

#7 Walk, wave, punch, kick, point

#8 Wave, punch, kick, point, pick up

(Weinland et al. 2007), which contains 12 simple action
classes. Each activity video is constructed by concatenating
five different simple actions selected from the 12 classes. For
each view, we synthesize eight complex activity classes and
different activity classes have different five atomic actions.
The detailed definitions of activity classes for each view are
illustrated inTable 1.Accordingly, the number of total atomic
action annotation terms is 12 and the number of present
annotation terms is 5. Each activity class is conducted by
12 subjects. We adopt the leave-one-subject-out cross val-
idation setting, in which videos of 11 subjects are used as
training data and videos of the remaining one subject are
used for testing.

Olympic Sports Dataset. The Olympic sports dataset
(Niebles et al. 2010) contains 16 different Olympic sports
activity classes: High-jump, Long-jump, Triple-jump, Pole-
vault, Gymnastics-vault, Shot-put, Snatch, Clean-jerk,
Javelin-throw, Hammer-throw, Discus-throw, Diving-
platform, Diving-springboard, Basketball-layup, Bowling,
and Tennis-serve. We define 24 atomic actions and manually
annotate each activity video by assigning it to 24 annotation
terms. The whole dataset is split into 649 videos for training
and 134 videos for testing.

UCF101 Dataset. The UCF101 dataset consists of realis-
tic user-uploaded videos from 101 action classes, and video
clips of each action are divided into 25 groups. We conduct
experiments on the following 13 actionswhich can be decom-
posed into a series of meaningful atomic actions: Balance
Beam, Basketball, Bowling, Cliff Diving, Diving, Hammer-
throw, High-jump, Javelin-throw, Long-jump, Pole-vault,
Shot-put, Throw-discus, and Uneven Bars. For each action
class, we use the video clips from 12 of the 25 groups as
testing samples, leaving the rest for training.

5.2 Experimental Setting

In this paper,we adopt a videodescription (Wanget al. 2013a)
based on dense trajectories and motion boundary histogram
descriptors. Dense trajectories are obtained by tracking dense
patches in videos, and two local descriptors (i.e., HOG and

MBH) are extracted from the spatiotemporal region around
each trajectory to describe the appearance and motion infor-
mation. The parameters of trajectory length and dense sample
step are set to 15 and 5, respectively. For the more com-
plex and challenging Olympic and UCF101 datasets , the
Motion Interchange Pattern (MIP) (Kliper et al. 2012) feature
is extracted to further improve the recognition performance.
The MIP descriptor encodes local motion patterns by match-
ing patches across successive video frames, and captures
local changes in motion directions. The standard bag-of-
words approach is utilized to construct a codebook for each
visual descriptor separately. The number of visual words per
descriptor is fixed to 400. To reduce the computational com-
plexity, a subset of 100,000 features are randomly selected
from the training data and clustered to generate the codebook
using k-means algorithm.

In our experiments, we split each video into several seg-
ments with equal length, and the length of each segment is set
to 30 frames. We generate a feature vector for a video with
all the local descriptors extracted from the entire video, and
create a representation for each segment using descriptors
within it.

The initialization of latent variables is important in prac-
tice for our method because NRBM can only guarantee a
local optimum solution. Since atomic action annotations of
the whole video are known for training samples, we initiate
the latent variables according to the atomic action annota-
tions under the constraints defined in Eq. 2.

5.3 Activity Recognition Results

We compare our method with several baseline methods on
the three datasets. The first baseline method is a linear SVM
model based on the bag-of-words visual feature extracted
from the entire activity video, without considering atomic
actions. The second baseline method is from our framework,
without considering the mapping model between video seg-
ments and atomic actions. For the synthesized multi-view
IXMAS activity dataset, we evaluate performances of differ-
ent methods with the recognition accuracy. For the Olympic
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Table 2 Comparison of action
recognition performance
between our method and the
baseline methods on the three
datasets

Method IXMAS Olympic UCF101

View 1 View 2 View 3 View 4 View 5

Linear SVM 0.729 0.844 0.771 0.844 0.656 0.737 0.682

No segments 0.781 0.854 0.833 0.844 0.760 0.794 0.708

Our method 0.959 0.959 0.969 0.969 0.938 0.820 0.743

Table 3 Mean average precision values for activity recognition
between our method and other state-of-the-art methods on the Olympic
sports dataset

Method Mean AP

Niebles et al. (2010) 0.625

Tang et al. (2012) 0.668

Liu et al. (2011) 0.743

Zhou and Wang (2012) 0.710

Li and Vasconcelos (2012) 0.765

Jiang et al. (2012) 0.806

Wang et al. (2013a) 0.772

Li et al. (2013) 0.782

Zhou et al. (2013) 0.783

Gaidon et al. (2014) 0.850

Our method 0.820

sports dataset and theUCF101 dataset, we compute theAver-
age Precision (AP) for each activity class and report themean
AP over all the activity classes.

We summarize the comparisons between our method and
the baseline methods on the synthesized multi-view IXMAS
activity dataset, Olympic sports dataset, and UCF101 dataset
inTable 2. Themethods of “Linear SVM”and “No segments”
indicate the first baseline and second baseline methods,
respectively. From Table 2, we have the interesting obser-

Table 4 Recognition accuracies of different methods from five views
on the synthesized multi-view IXMAS activity dataset

Method View 1 View 2 View 3 View 4 View 5

Tang et al. (2012) 0.854 0.833 0.823 0.875 0.667

Zhou et al. (2013) 0.865 0.896 0.813 0.875 0.813

Our method 0.959 0.959 0.969 0.969 0.938

vations as follows: (1) our method outperforms the linear
SVM on the three datasets, which obviously demonstrates
that it is beneficial to exploit a set of atomic actions for
distinguishing different complex activities; (2) by incorpo-
rating the segment-annotation mapping matrix into model,
our method achieves better results than the second baseline
method which does not consider the relationship between
video segments and atomic actions. Clearly, exploring tem-
poral structure of atomic actions further improves the activity
classification performance.

Table 3 compares our method with state-of-the-art meth-
ods on the Olympic sports dataset by evaluating the mean
average precision over all activity classes. As shown in Table
3, our method performs better than (Niebles et al. 2010; Tang
et al. 2012; Liu et al. 2011; Zhou andWang 2012; Li andVas-
concelos 2012; Jiang et al. 2012; Wang et al. 2013a; Li et al.
2013; Zhou et al. 2013) and achieves comparable perfor-

0.0
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0.2
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0.5

0.6

0.7
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1.0
 Niebles et al (2010) Tang et al (2012) Li et al (2013) Our Method

Fig. 2 Average precision values for activity recognition of different methods on the Olympic sports dataset (Color figure online)
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Table 5 Average Precision
values for activity recognition of
three methods on the UCF101
dataset

Activity Tang et al. (2012) Zhou et al. (2013) Our method

Balance-beam 0.724 0.824 0.858

Basketball 0.678 0.671 0.756

Bowling 0.977 0.965 0.967

Cliff-diving 0.973 0.952 0.947

Diving 0.967 0.970 0.977

Hammer-throw 0.705 0.637 0.719

High-jump 0.555 0.605 0.636

Javelin-throw 0.509 0.500 0.466

Long-jump 0.643 0.629 0.655

Pole-vault 0.619 0.772 0.848

Shot-put 0.292 0.324 0.330

Discus-throw 0.406 0.454 0.543

Uneven-bars 0.934 0.924 0.948

MAP 0.691 0.710 0.742

Bold values indicate the best performance

mance with (Gaidon et al. 2014) which preprocesses videos
by using cameramotion compensationmethod. Although the
Olympic sports dataset is difficult with large appearance and
background variability, our result is still encouraging which
shows that our model is able to capture the semantic concept
and temporal structure of atomic actions for distinguishing
different activity classes. Figure 2 compares the per-class
Average Precision values for activity recognition between
our method and three methods. From Fig. 2, we can observe
that our method achieves better performance for most activ-
ities.

To show the promising performance of our method, we
also compare it with two relevant methods (Tang et al. 2012;
Zhou et al. 2013) on the synthesized multi-view IXMAS
activity dataset and UCF101 dataset. Table 4 summarizes the
recognition accuracies of three methods for different views
on the synthesized multi-view IXMAS activity dataset. For
all views, our method achieves the highest recognition accu-
racy with the same feature and the same evaluation strategy.
Table 5 depicts the Average Precision (AP) values of each
activity on the UCF101 dataset. As is shown in Table 5, for
most of the activities from the UCF101 dataset, our method
yields higher AP than both (Tang et al. 2012) and (Zhou
et al. 2013) using the same evaluation setting and the same
feature. We note that the result on “shot-put” is relatively
poor in comparison with other activities. One possible rea-
son is the large variations within this class due to various
factors such as motion style.

5.4 Evaluation of the Semi-supervised Method

We evaluate the performance of our semi-supervised method
for learning atomic action annotations of training videos on

0.600
0.625
0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875

25% 50% 75%

Olympic UCF101

Fig. 3 Accuracies of atomic action annotations with a varying number
of training videos annotated with both activity and atomic action labels
(Color figure online)

the Olympic sports dataset and the UCF101 dataset. In this
experiment, all the training videos are annotated with the
overall activity labels, and we randomly annotate 25, 50, and
75% of the training videos with atomic actions. For each
setting, we compute the accuracy of atomic action annota-
tions for the rest training videos, and summarize the results
in Fig. 3. A video is considered to be correctly annotated
only if all the atomic action annotations are consistent with
the ground-truth. From Fig. 3, we can see that performance
of atomic action annotation increases with the amount of
training videos annotated with atomic action labels.

Figure 4 compares our model using the semi-supervised
method to learn the atomic action annotations of train-
ing videos with the Linear SVM baseline method. Notice
that, when the proportion of training videos annotated with
atomic actions are increased to 100%, all the training videos
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Fig. 4 Mean average precision values for activity recognition of two methods. a The Olympic sports dataset, b the UCF101 dataset (Color figure
online)

are annotated with atomic actions and our method is fully
supervised. Figure 4 shows that our semi-supervised method
outperforms the Linear SVM baseline method by making
using of the videos not annotated with atomic action labels.
Furthermore, when only 25% of training videos are anno-
tated with atomic actions, our model with semi-supervised
learning can perform better than the Linear SVM baseline
method using all training videos. If the proportion of training
videos annotatedwith atomic actions is increased to 75%, our
model with semi-supervised learning achieves comparable
performance to the supervised model using 100% annotated
training videos, which demonstrates the effectiveness of the
semi-supervised method.

5.5 Video Description Results

In addition to performing competitive recognition results on
difficult datasets, our method is also capable of obtaining a
rich description of a long activity video by capturing both
semantic concept and temporal structure of atomic actions.
Specifically, ourmethod can interpret a new complex activity
via finding “what” simple atomic actions happening in the
video based on the predicted atomic action annotations h,
as well as detecting “when” these atomic actions occurring
in the temporal direction based on the predicted segment-
annotation mapping matrix g.

5.5.1 Quantitative Evaluation

We conduct experiments on the synthesized multi-view
IXMAS activity dataset and quantitatively evaluate the per-
formance of our method for video description. According
to the predicted segment-annotation mapping matrix, each
segment is annotated with at most one atomic action, and

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

view0 view1 view2 view3 view4 Average

Hoai et al (2011) baseline Our method

Fig. 5 Accuracies of segment annotations for three methods on the
synthesized multi-view IXMAS activity dataset. This figure is best seen
in color (Color figure online)

the performance is evaluated by computing the accuracy of
segment annotations.

We compare our method with the method in (Hoai
et al. 2011), which jointly performs action segmentation
and action recognition in videos. In our experiments, the
method in (Hoai et al. 2011) takes segments of a synthesized
activity video as input, and annotates the video segments
with different atomic actions. This method focuses on the
annotation of atomic actions for video segments, without
considering the complex activity label of the whole video.
Different from it, our method utilizes a unified framework
to capture the relationship among video segments, atomic
actions and complex activities, and obtains a hierarchical
description based on “which” activity, “what” atomic actions,
and “when” of atomic actions happening in a video. Our
method is also compared with a baseline method, which is
from our framework without considering the temporal dis-
tribution of atomic actions. Particularly, the baseline method
neglects

∑R
i=1

∑V
j=1

∑R
k=1

∑V
l=1 g

n
i j · gnkl · ρ(i, j, k, l) that

forces the mapping matrix to be consistent with the tem-
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Our 
method 

Ground  
truth 

Our 
method 

Ground  
truth 

View 1 View 2 View 3 View 4 View 5 

Fig. 6 Comparison between our prediction results and the ground truth
on detecting semantic concept and temporal structure of atomic actions
for the synthesized multi-view IXMAS activity dataset. In each view,
we show two examples (i.e., test activities) depicted by colorbars. Dif-

ferent colors represent different atomic action classes (i.e., annotation
terms). Thewidth of color bin indicates the temporal duration of the cor-
responding atomic action class. This figure is best seen in color (Color
figure online)

Ac�vity:  
Triple-jump 

Ac�vity:  
High-jump 

Ac�vity:  
Bowling 

Run-up Hop and bound in triple-jump Jump into sand pit 

Run-up Clear the bar in high-jump 

Bowling pitch Bowling rolling 

Fig. 7 Examples of activity video description results on the Olympic
sports dataset. The timeline shows the detected semantic concepts of
each video, where different colors indicate different atomic actions and

“black” segments are not associated with any atomic action. This figure
is best seen in color (Color figure online)
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Ac�vity: 
Balance beam 

Ac�vity:  
Pole-vault 

Ac�vity:  
Uneven bars 

tluavelopnirabehtraelCpu-nuR

tnuomsiDelcricraB

Walk on the balance beam Somersault on the balance beam Dismount 

Fig. 8 Examples of activity video description results on the UCF101 dataset. The timeline shows the detected semantic concepts of each video,
where different colors indicate different atomic actions. This figure is best seen in color (Color figure online)

poral distribution of atomic actions, and Eq. 4 is rewritten
as maxgn [w�Φ(xn, yn,hn, gn) −maxg w�Φ(xn, y,h, g) ≥
�((yn,hn), (y,h)) − ξn,∀n,∀y,∀h].

Comparison of our method, the baseline method, and the
method in (Hoai et al. 2011) is shown in Fig.5. From Fig.5,
we have two observations as follows: (1) our method is
able to achieve much better performance than the method
in Hoai et al. (2011) by jointly modeling the relationship
among video segments, atomic actions, and complex activi-
ties, which demonstrates the ability of our method for video
description; (2) for each view, our method performs signifi-
cantly better than the baseline method, which demonstrates
that it is reasonable and effective to enforce the consistency
between the segment-annotation mapping matrix and the
temporal distribution of atomic actions.

Examples of comparisons between our prediction results
and the ground-truth on the synthesized multi-view IXMAS
activity dataset are demonstrated in Fig.6. In most cases, our
method succeeds in accurately predicting both the seman-
tic concept and temporal localization of atomic actions. The
reason for error occurring at the boundaries between atomic
actions may be attributed to the initial segmented video clips,
in which some clips may cross two different atomic actions.

5.5.2 Qualitative Evaluation

Since theground-truth of segment-annotationmappingmatrix
is not available for the Olympic sports and UCF101 datasets,
we show qualitative results in this section. Examples of
descriptions for activities by the semantic annotation and
temporal localization of atomic actions for the Olympic
sports dataset and the UCF101 dataset are illustrated in
Figs. 7 and 8, respectively. Taking “triple-jump” in Fig. 7
for example, it is associated with atomic actions “run-up”,
“hop and bound in triple-jump”, and “jump into sand pit”. It
is also interesting to observe that these atomic actions are
roughly localized in the video time. Beside, our method
is able to roughly temporal localize atomic actions that
only appear in one activity, such as “bowling pitch” and
“bowling rolling” in activity “bowling”, by enforcing the
consistency between the segmentation-annotation mapping
matrix and the prior temporal distribution of atomic action
annotations. From Figs. 7 and 8, we can see that the “black”
segments not related to any atomic action are motionless
video segments (See “bowling” activity) or irrelevant actions
(See “high-jump”, “triple-jump” and “pole-vault” activi-
ties). Furthermore, atomic actions are shared among different
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activities, for example, the atomic action “run-up” appears
in both “triple-jump” and “high-jump” activities in Fig. 7,
and the atomic action “dismount” appears in both “balance
beam” and “uneven bars” activities in Fig. 8.

6 Conclusions

We have presented a hierarchical and complete description
of an activity video by automatically inferring the “which” of
activities, “what” of atomic actions, and “when” of present
atomic actions.Anovel latent discriminative structuralmodel
is developed to model the relationship among video seg-
ments, atomic action annotations, and overall activities.
Competitive activity recognition results have been shown
on difficult datasets. Meanwhile, quantitative and qualitative
experiments have demonstrated the capability of our model
for video description.
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