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Abstract. This paper goes beyond recognizing human actions from a
fixed view and focuses on action recognition from an arbitrary view. A
novel learning algorithm, called latent kernelized structural SVM, is pro-
posed for the view-invariant action recognition, which extends the ker-
nelized structural SVM framework to include latent variables. Due to the
changing and frequently unknown positions of the camera, we regard the
view label of action as a latent variable and implicitly infer it during both
learning and inference. Motivated by the geometric correlation between
different views and semantic correlation between different action classes,
we additionally propose a mid-level correlation feature which describes
an action video by a set of decision values from the pre-learned classifiers
of all the action classes from all the views. Each decision value captures
both geometric and semantic correlations between the action video and
the corresponding action class from the corresponding view. After that,
we combine the low-level visual cue, mid-level correlation description,
and high-level label information into a novel nonlinear kernel under the
latent kernelized structural SVM framework. Extensive experiments on
multi-view IXMAS and MuHAVi action datasets demonstrate that our
method generally achieves higher recognition accuracy than other state-
of-the-art methods.

Key words: View-invariant action recognition, latent kernelized struc-
tural SVM, correlation feature, multiple level features

1 Introduction

Automatic recognition of human action from a single video has become an essen-
tial area of research in computer vision. Many previous approaches [1] [2] [3] [4] [5]
have achieved good performance, however, the assumption that all the action
videos are captured from a fixed view point limits their robustness to different
view points and camera parameters in real world applications. Consequently,
view-invariant action recognition from an arbitrary view point has attracted
much attention in recent years. Because of the changing positions of cameras
and self-occlusions between different body parts, the appearance and motion of
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actions may drastically vary from one view point to another. Therefore, view-
invariant action recognition poses substantial challenges for computer vision al-
gorithms.

Some existing approaches address the view-invariant action recognition by us-
ing epipolar geometry [6] [7] or a full 3D reconstruction [8] [9]. Such approaches
require either the point correspondence estimation or the calibration setup of
multiple cameras. Some other methods propose to learn the view-invariant fea-
tures such as the temporal self-similarity descriptor [10] and the view and style-
independent manifold representation [11]. However, both of them rely on the
rough localization and tracking of people in the video.

In this work, we address the view-invariant action recognition from a different
perspective by avoiding many assumptions of previous methods. We propose
a novel latent kernelized structural SVM learning algorithm that allows the
use of latent variables in the kernelized structural SVM for recognizing actions
from an arbitrary view point. This method discriminatively learns the mapping
function from a single video to an action class. In order to address the difficulty
of frequently changing and unknown positions of camera, we treat the view label
of an action as a latent variable and implicitly infer it during both learning and
inference stages. Consequently, the view-invariant recognition in this paper is
achieved by unifying action classification and view prediction in a principled
structural framework.

Due to the geometric constraints between different views, videos of the same
action recorded from multiple views may demonstrate some correlations. For ex-
ample, the videos from neighboring cameras may present more similar on visual
cues when compared with the videos from faraway cameras, so it is beneficial to
describe actions by exploiting their correlations between different views. More-
over, we also introduce the semantic correlations between different action classes
to represent actions. Specifically, a set of decision values produced by the pre-
learned classifiers of all the action classes from all the view points is proposed as
a mid-level correlation feature in this paper. Each decision value measures the
likelihood that the action video belongs to the corresponding action class from
the corresponding view.

Moreover, we define a novel nonlinear kernel to fuse multiple level information
under the latent structural SVM framework for further improving the recognition
performance. This kernel combines multiple kernels and measures the similarity
between two action videos based on the low-level visual feature, the mid-level
correlation feature and the high-level action class-view label pair information.

The main contributions of this work are three-fold. Firstly, we propose a
new latent kernelized structural SVM learning method for view-invariant action
recognition by regarding the view label of action as a latent variable. Secondly, we
propose a novel mid-level correlation feature with more discriminative power and
robustness, which captures both geometric correlation between multiple views
and semantic correlation between different action classes. Thirdly, we integrate
the low-level visual cue, mid-level correlation feature and high-level class-view
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label pair information into a novel nonlinear kernel used in the latent kernelized
structural SVM framework.

2 Related Work

2.1 View-invariant Action Recognition

Yilmaz and Shah [6] exploited dynamic epipolar geometry by imposing temporal
fundamental matrix for view-invariant action recognition. Shen and Foroosh [7]
proposed the ratios among the elements in the upper left 2×2 submatrix of fun-
damental matrix F for action recognition from varying viewpoints. Such epipo-
lar geometry-based methods assume that the point correspondence should be
known, which is still a difficult problem.

In [8], the actions are described by 3D exemplars represented by visual hulls,
and action recognition is achieved by matching between observation and exem-
plars in 2D by projecting visual hulls. Yan et al. [9] proposed 4D action feature
model to recognize actions in arbitrary views by mapping features from indi-
vidual views to the surfaces of 4D action shapes obtained from time ordered
multi-view 3D reconstructions of the actors. These 3D construction-based ap-
proaches require a calibration setup of multiple cameras, which restricts their
applicability in practice.

Junejo et al. [10] explored self-similarities of action sequences over time and
extracted view-invariant features based on frame-to-frame similarities within a
sequence. In [11], each action is modeled as the embedded manifold of image
sequences by dimension reduction methods, and all view-dependent manifolds
are automatically combined to discover a unified and view-independent repre-
sentation. With the assumption of rough localization and tracking of people in
the video, these methods are usually applied in constrained environments.

Recently, transfer learning has been exploited to recognize actions from the
target view when training the action models from the source view. Liu et al. [12]
proposed to learn bilingual-words from two view-dependent vocabularies and
transferred actions from bag-of-visual-words model to bag-of-bilingual-words
model. Farhadi and Tabrizi [13] used Maximum Margin Clustering to gener-
ate split features in the source view and then learned the split features in the
target view by the transferred split values from source view.

2.2 Discriminative Structural Learning Model

The discriminative structural learning methods most closely related to our ap-
proach are that of [14] [15] [16]. Tsochantaridis et al. [14] generalized the multi-
class SVM learning to the broader problem of learning the complex structured
outputs and formulated the objective function as a dual formulation allowing the
use of kernel functions. Yu and Joachims [16] used approximate cutting planes
and random sampling to enable efficient training of structured SVM with ker-
nels. Different from [14] and [16], we extend the kernelized structural SVM to
include latent variables for structured output prediction.
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Yu and Joachims [15] presented the structural SVM with latent variables
where the feature vector extracted jointly from inputs and outputs is akin to
conventional linear SVMs, and utilized the Concave-Convex Procedure to solve
the optimization problem. Latent structural SVM and its variants have found
their wide applications in many computer vision scenarios, e.g. object recognition
with attributes [17], image annotation and segmentation [18], action recognition
from pose estimation [19], and group activity recognition [20]. All these methods
utilize linear models and adopt a non-convex cutting plane algorithm [21] to solve
the optimization problem. In contrast, our method bases the optimization on the
dual program formulation and uses the nonlinear kernel function to fuse multiple
level information with more flexible and powerful input-output representations.

3 Latent Kernelized Structural SVM for View-Invariant
Action Recognition

3.1 Model Formulation

We define the view-invariant action recognition as learning a prediction function
that maps the input action video to an output action label with the unob-
served latent view label. Suppose we are given a training set of structured pairs
{(xi, yi)}, i = 1, 2, ..., n, (xi, yi) ∈ X×Y and a set of unobserved latent variables
{hi}, i = 1, 2, ..., n, hi ∈ H, our goal is to learn a prediction rule of the following
form:

fw(x) = argmax(y,h)∈Y×HF (x, y, h) = argmax(y,h)∈Y×H[w · Φ(x, y, h)], (1)

where Φ(x, y, h) is a joint feature vector that describes the relationship among
the input action video x, output action class label y and latent view label h. The
optimization problem of computing this argmax is typically referred to as the
“inference” or “recognition” problem. We define F (x, y, h) as follows:

F (x, y, h) = w · Φ(x, y, h) = η · ϕ(x, y) + β · φ(x, y, h). (2)

The model parameters w are simply the concatenation of two parts, i.e., w =
{η;β}. The details of each term are described in the following.

Global view-invariant action model η · ϕ(x, y): This potential function mea-
sures the compatibility between an action video x and an action class label
y without considering the view point information. It is parameterized as: η ·
ϕ(x, y) =

∑|Y|
i=1 ηi · δ(x) · Ii(y), where δ(x) represents the extracted feature of ac-

tion x, and ηi indicates the weight vector for the feature δ(x) to take the action
label i. Ii(y) is an indicator function, namely, Ii(y) = 1 if y = i, and Ii(y) = 0
otherwise.

Local view-specific action model β ·φ(x, y, h): In addition to the global view-
invariant action model, we also define a view-specific action model parameterized

by β · φ(x, y, h) =
∑|Y|

i=1

∑|H|
j=1 βij · δ(x) · Ii(y) · Ij(h), where βij represents the

weight vector for δ(x) to take the action label i when the view label is j. The
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motivation for this potential function is that the same action might appear
differently across multiple views. By separately learning action models for each
view, the learning becomes easier since the positive examples within the same
action class are similar to each other.

3.2 Learning

Given a set of training examples {(xi, yi)}, i = 1, 2, ..., n, the model parameters
w are learned through the following optimization problem:

min
w

1

2
∥w∥2 +

n∑
i=1

ξi,

ξi = l(maxh̄i∈HF (xi, yi, h̄i)−max(ŷi,ĥi)∈Y×HF (xi, ŷi, ĥi)), (3)

where l(t) is the hinge loss function defined by l(t) = Cmax(0, 1− t). Since the
objective function in Eq.(3) is a non-convex problem, we propose an algorithm
that alternates between computing the latent variables h̄i that best explains
the training pair (xi, yi) and solving the standard structural SVM optimization
problem while treating the latent variables as completely observed. By replacing
the label pair (y, h) with s, the objective function of structural SVM with the
observed latent variable h̄i can be rewritten as

min
w

1

2
∥w∥2 +

n∑
i=1

ξi, ξi = l(F (xi, si)−maxŝi∈Y×HF (xi, ŝi)), (4)

where si = (yi, h̄i) and ŝi = (ŷi, ĥi). Different from [15], we base the optimization
of structural SVM on the dual program formulation which only depends on inner
products in the joint feature space allowing the use of kernel functions. Following
[22], the dual optimization problem of standard structural SVM is formulated
by

min
α,γ

γ −
∑
i

αisi ,

s.t. ∀i : 0 ≤ αisi ≤ C, ∀i : ∀u ̸= si : αiu ≤ 0, ∀i :
∑
u∈S

αiu = 0,

∀u :
∑
i

αiu = 0, γ ≥ 1

2

∑
i,j

∑
u,v∈S

αiuαjvK(ψ(xi, u), ψ(xj , v)), (5)

where S = Y × H. The solution of this dual problem gives a set of weights α
for the support vectors. The kernel K(ψ(xi, u), ψ(xj , v)) analytically describes
the relationship between two video-label pairs without requiring an explicit ex-
pression for the joint feature vector ψ(x, s). After obtaining the optimal α, the
scoring function can be given by

F (x, y, h) = F (x, s) =
∑
i

∑
u∈S

αiuK(ψ(xi, u), ψ(x, s)). (6)

The algorithm of latent kernelized structural SVM is listed in Algorithm 1.
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Algorithm 1 Latent Kernelized Structural SVM

Input: {xi, yi}ni=1

Output: {αiu}ni=1, u ∈ S

Initialize {h(0)
i }ni=1 and set t = 0.

repeat
Compute the weights α

(t)
iu by solving Eq.(5) given the training set {xi, yi, h(t)

i }.
Compute the latent variables h

(t+1)
i by solving h

(t+1)
i =

argmax
h
(t+1)
i

∑
j

∑
u∈Sα

(t)
juK(ψ(xj , u

(t)
j ), ψ(xi, u

(t+1)
i )) given the weights α

(t)
iu

with u
(t)
j = (yj , h

(t)
j ) and u

(t+1)
i = (yi, h

(t+1)
i ).

until
∑

i

∑
u∈S |α(t+1)

iu − α
(t)
iu | < ϵ

3.3 Inference

The inference problem is to find the best action label y for a test video x, and
we need to solve the following optimization problem:

max
y,h

F (x, y, h) = max
s
F (x, s) = max

s∈S

∑
i

∑
u∈S

αiuK(ψ(xi, u), ψ(x, s)). (7)

For simplicity, we directly enumerate all the possible action class-view label pairs
(y, h) to predict the optimal action label y for x.

4 Designing a Kernel by Fusing Multiple Level
Information

Under the latent kernelized structural SVM framework, the joint kernel K is
equivalent to the tensor product of the feature spaces produced by each individ-
ual kernel:

K(ψ(x1, u1), ψ(x2, u2)) = Kx(x1, x2) ∗Ku(u1, u2), (8)

where Kx(x1, x2) measures the video/action similarity and Ku(u1, u2) mea-
sures the action class-view label pair similarity. Such joint kernel function fuses
bottom-up video cues (i.e.,Kx) and top-down semantic label information (i.e.,Ku).
It encodes the mutual matching between two video-class-view triples: if the
videos are similar, the class-view label pairs have to be similar as well. In
case either the videos are significantly different or the class-view label pairs
are not matching, the kernel response has to be low. In this paper, we pro-
pose a novel mid-level correlation feature to describe actions and thus the video
similarity kernel is designed to be the combination of low-level visual feature
kernel Klow

x (x1, x2) and mid-level correlation feature kernel Kmid
x (x1, x2), i.e.,

Kx(x1, x2) = Klow
x (x1, x2) +Kmid

x (x1, x2).
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4.1 Low-level Visual Feature Kernel

The low-level visual feature kernel combines several individual kernels with each
one capturing a specific type of visual feature:

Klow
x (x1, x2) =

L∑
l=1

klowl (x1, x2), (9)

where L is the number of feature types and klowl (x1, x2) is the kernel based on
the l-th visual feature. To capture the motion and appearance information of
actions, we respectively extract the spatio-temporal context distribution feature
and appearance feature of interest points [23]. The dense trajectory features
(including trajectory, HOG, HOF and MBH) proposed by Wang et al. [24] are
also integrated to further improve the recognition performance. Moreover, the
local SIFT feature [25] is extracted from randomly selected frames in the video
and employed as a static description for action. Consequently, we use seven dif-
ferent types of heterogeneous and complementary low-level visual features (i.e.,
spatio-temporal context distribution and appearance features of interest points,
four types of dense trajectory features, and SIFT feature) and the correspond-
ing seven individual kernels are combined into the low-level visual feature kernel
(i.e., L = 7).

4.2 Mid-level Correlation Feature Kernel

The extracted low-level visual features only represent the visual information of
action video and their discriminative capability is limited. Thus we propose a
mid-level correlation feature which captures the correlations between different
action classes from different views, to abstract the visual content of video. Dif-
ferent from previous mid-level semantic feature such as concept score [26] and
attribute feature [27] [28], the proposed correlation feature not only describes the
semantic correlation between different classes, but also represents the geometric
relationship between different views. The intuitive explanation is that: the same
action captured by multiple views may often have deformation correlations due
to the geometric constraints between views. For example, the same action may
look similar with less deformation when observed by two neighboring views (e.g.,
“view1” and “view2”) while may look different with more deformation when ob-
served by two faraway views (e.g., “view1” and “view3”), so it is beneficial to
develop a descriptor for the action from “view1” by capturing the “view1-view2”
and “view1-view3” correlations.

For each action video, its mid-level correlation feature is represented by a
set of decision values determined by the pre-learned classifiers of all the action
classes from all the views. The pre-learned classifiers are trained using SVM
classifiers in this work. Specifically, using each type of low-level visual feature,
an independent SVM classifier is trained for each action class from each view.
Based on seven types of low-level visual features mentioned in Section 4.1, seven
independent SVMs are learned for each action class from each view to produce
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the decision values. Let us denote f lc,v(x) as the pre-learned classifier of the c-th
action class from the v-th view using the l-th type of visual feature extracted
from action video x. Using the l-th type of visual feature, the likelihood that the
video x belongs to the c-th action class captured by the v-th view is modeled by
the classification score glc,v = f lc,v(x), and the corresponding correlation feature

of x is then represented by Gl = [gl1,1, ..., g
l
C,1, g

l
1,2, ..., g

l
C,2, ..., g

l
C,V ]

T ∈ RD, D =
C×V , where C and V are the numbers of action classes and views, respectively.
Similar to the low-level visual feature kernel, the mid-level correlation feature
kernel is designed to be the combination of individual kernels:

Kmid
x (x1, x2) =

L∑
l=1

kmid
l (x1, x2), (10)

where kmid
l (x1, x2) is the kernel based on the l-th correlation feature and mea-

sures the similarity between x1 and x2 via the l-th correlation feature.

4.3 High-level Label Pair Kernel

The high-level action class-view label pair kernel Ku is expressed as

Ku(u1, u2) = J(y1, y2) + J(y1, y2) ∗ J(h1, h2), (11)

where yi and hi represent the labels of action and view, respectively. ui = (yi, hi)
is the action class-view label pair. J(a, b) is the indicator function of a = b,
namely, J(a, b) = 1 if a = b, and J(a, b) = 0 otherwise.

5 Experimental Results

5.1 Human Action Datasets

We evaluate the performance of our method and compare it with the state-of-the-
art methods on two benchmark multi-view action datasets: IXMAS dataset and
MuHAVi dataset. Fig.1 shows some action examples of these two datasets. The
IXMAS dataset [8] consists of 12 complete action classes and each is executed
three times by 12 subjects. Each action is recorded by five cameras observing the
subjects from very different perspectives with the frame rate of 23fps and the
frame size of 390×291 pixels. These actions are: check watch, cross arms, scratch
head, sit down, get up, turn around, walk, wave, punch, kick, point and pick up.
The body position and orientation are freely decided by different subjects.

The MuHAVi dataset [29] contains 17 human action classes: WalkTurnBack,
RunStop, Punch, Kick, ShotGunCollapse, PullHeavyObject, PickupThrowOb-
ject, WalkFall, LookInCar, CrawlOnKnees, WaveArms, DrawGraffiti, JumpOv-
erFence, DrunkWalk, ClimbLadder, SmashObject and JumpOverGap. Each ac-
tion video is performed by seven actors and recorded using eight Schwan CCTV
cameras with the frame rate of 25fps in a site with challenging lighting conditions
provided by multiple sources of night street lights. Due to the computational
complexity, we just choose the action videos captured by four cameras (i.e., two
side cameras and corner cameras) in our experiment.
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   Cam1         Cam2           Cam3           Cam4          Cam5

     
(a) IXMAS Dataset 

    Cam1              Cam3            Cam4            Cam6 

    
(b) MuHAVi Dataset 

Fig. 1. Sample frames from action videos on (a)IXMAS and (b)MuHAVi datasets

5.2 Experimental Setup

For interest points detection, the spatial and temporal scale parameters σ and
τ are empirically set by σ = 2 and τ = 2.5, respectively. 1000 interest points are
extracted from each video and the size of cuboid around each point is empirically
fixed as 7×7×5. For the spatio-temporal context distribution feature of interest
points, the number of space-time scales is fixed to 3. For the appearance feature
of interest points, we first normalize the gray-level pixel values in each cuboid
and then flatten each cuboid into a vector which is further reduced via Princi-
ple Component Analysis (PCA) by preserving 98% energy. Four descriptors of
dense trajectory (i.e., trajectory, HOG, HOF and MBH) are extracted with the
trajectory length of 15 and dense sampling step size of 5. The SIFT features
are extracted from the 20% frames randomly selected from each video. We use
the standard bag-of-words approach and construct a codebook for each visual
descriptor separately and the number of visual words per descriptor is fixed to
2000.

For the visual feature kernel, we adopt the non-linear χ2 kernel [24] defined

by klow(x1, x2) = kχ2(H1,H2) = exp(−
∑I

i=1
(h1i−h2i)

2

h1i+h2i
), where H1 = {h1i}

and H2 = {h2i}, i = 1, 2, ..., I, are low-level visual features (i.e., the frequency
histograms of word occurrences) of videos x1 and x2, respectively. I is the code-
book size. For the correlation feature kernel, we use the non-linear RBF kernel

expressed by kmid(x1, x2) = kRBF(d1, d2) = exp(− |d1−d2|2
2 ), where d1 and d2 are

mid-level correlation features of videos x1 and x2, respectively.

5.3 Experimental Results

We learn the latent kernelized structural SVM (LKSSVM) model using the train-
ing videos from all the views without view labels and recognize the testing action
from arbitrary single view. The leave-one-out cross validation strategy is em-
ployed in our experiment, in which videos of one subject are selected for testing
and videos of the remaining subjects are used as training data.
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1)Comparison with baseline methods: In order to evaluate the effec-
tiveness of our method for view-invariant action recognition, we compare the
recognition accuracies respectively using nonlinear SVM [30], latent structural
SVM [15] and the proposed latent kernelized structural SVM on the low-level
visual features. For the nonlinear SVM, χ2 kernel is adopted and the one-against-
all setting is applied to cope with multi-class classification task. For the latent
structural SVM (LSSVM), the discriminative model is the same to that defined in
Eq.(2). Different from LKSSVM using kernel functions in optimization, LSSVM
formulates the model akin to conventional linear SVMs and the optimization
problem is solved by the non-convex bundle algorithm proposed in [21].

Table 1 and Table 2 demonstrate the recognition results of different meth-
ods on the multi-view IXMAS dataset and MuHAVi dataset, respectively. It
is interesting to have the observations as follows: 1) LKSSVM outperforms the
baseline nonlinear SVM in terms of recognition accuracy on both datasets, which
obviously demonstrates the benefit of modeling the view label as a latent vari-
able and predicting it during both learning and inference. 2) By fusing multiple
level information into a nonlinear kernel, LKSSVM achieves better results than
LSSVM which formulates the model akin to conventional linear SVMs. The intu-
itive explanation is that kernel is able to encode complex relationships between
two video-label pairs by evaluating the quality of the mutual matching between
video-label pairs.

We additionally compare the performances using only low-level visual fea-
tures, using only mid-level correlation feature and using the combined low-level
visual features and mid-level correlation features, as shown in Table 3 and Table
4. The combination of low-level visual features and mid-level correlation features
achieves the best results in all the cases, which demonstrates the effectiveness of
using the decision values from the pre-learned classifiers of all the action classes
from all the views to improve the recognition performance. Fig.2 illustrates the
confusion table of recognition result on IXMAS dataset. It is interesting to ob-
serve that for some actions such as “sit down”, “walk” and “kick”, our method
achieves very high recognition accuracies. Even for some challenging actions such
as (e.g., “point”, “scratch head” and “wave”) that have small and ambiguous
motions, our method still achieves reasonable and promising results. The confu-
sion table of recognition result on MuHAVi dataset shown in Fig.3 also shows
good performance of the proposed method for most actions.

Table 1. Accuracies (%) of different methods with visual features on IXMAS dataset.

Methods View1 View2 View3 View4 View5 Ave.

SVM 88.89 84.03 84.72 81.25 78.47 83.47
LSSVM 87.50 83.33 86.11 81.25 86.11 84.86
LKSSVM 90.97 85.42 88.89 88.19 90.97 88.89

2)Comparison with other state-of-the-art methods: Different state-of-
the-art methods may use different experimental settings. For a fair comparison,
we conduct extensive experiments with the same experimental settings which are
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Table 2. Accuracies (%) of different methods with visual features on MuHAVi dataset.

Methods View1 View3 View4 View6 Ave.

SVM 93.28 92.44 93.28 95.80 93.70
LSSVM 91.60 94.12 95.80 95.80 94.33
LKSSVM 96.64 93.28 94.12 94.12 94.54

Table 3. Accuracies (%) using LKSSVM with different features on IXMAS dataset.

Features View1 View2 View3 View4 View5 Ave.

Visual 90.97 85.42 88.89 88.19 90.97 88.89
Correlation 93.75 89.58 90.97 90.28 90.28 90.97
Visual+Correlation 94.44 90.97 91.67 89.58 88.89 91.11

Table 4. Accuracies (%) using LKSSVM with different features on MuHAVi dataset.

Features View1 View3 View4 View6 Ave.

Visual 96.64 93.28 94.12 94.12 94.54
Correlation 93.28 96.64 98.32 97.48 96.43
Visual+Correlation 96.64 97.48 98.32 97.48 97.48
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applied in those state-of-the-art approaches. Table 5 illustrates the recognition
performances of related methods when the video data from all views are used for
training and the videos from one view are used for testing. In the setting with 11
actions, the “point” action is not considered. In the setting with 10 subjects, the
“Pao” and “Srikumar” subjects are not considered. Compared with the methods
[31] [8] [10], our method significantly improves the recognition performance in
all five views with the same experimental setting. Owing to the fact that there
are only 12 actions completely conducted by all the 12 subjects, we compare
our method using 12 actions and 12 subjects with the methods [32] [33] using
13 actions and 12 subjects. Despite the slightly different setting, our method
displays better results in all cases with the videos from four cameras (the top
view excluded).

Moreover, a group of experiments are conducted, which test actions from
one selected view while learn discriminative models from the other remaining
views. There is no information from the testing view when learning the models.
As shown in Table 6, our method significantly outperforms [12] for most views
except the top view. The intuitive explanation is that the other four views are
not able to provide enough information when testing on the top view since visual
appearance of actions drastically varies from other four views to the top view.
In [12], the connection between the top view and the other four views are learned
during the training phase, which leads to the good recognition performance on
the target top view.

Table 5. Accuracies (%) of state-of-the-art methods on IXMAS dataset. All these
methods use the video data from all views for training and test on a single view. The
columns “Act.” and “Sub.” respectively indicate the numbers of action classes and
views.

Methods Act. Sub. View1 View2 View3 View4 View5 Ave.

Weinland et al. [31] 11 10 86.7 89.9 86.4 87.6 66.4 83.4
Weinland et al. [8] 11 10 65.4 70.0 54.3 66.0 33.6 57.9
Junejo et al. [10] 11 10 74.8 74.5 74.8 70.6 61.2 71.2
Our method 11 10 98.18 97.27 98.18 95.45 96.36 97.09
Liu and Shah [32] 13 12 76.7 73.3 72.0 73.0 - 73.8
Reddy et al. [33] 13 12 69.6 69.2 62.0 65.1 - 66.5
Our method 12 12 95.14 89.58 91.67 90.28 - 91.67

6 Conclusions

We have proposed a novel latent kernelized structural SVM learning method for
recognizing human actions from arbitrary views. Different from previous work on
view-invariant recognition, we model the view label as a latent variable to address
the difficulty of changing and unknown camera positions, which benefits the
improvement of action recognition. In order to exploit the correlation between
different view points and action classes, a novel mid-level correlation feature
has been presented by using the decision values from pre-learned classifiers of
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Table 6. Accuracies (%) of state-of-the-art methods on IXMAS dataset when one view
is used for testing and the remaining views are used for training.

Methods Act. Sub. View1 View2 View3 View4 View5 Ave.

Liu et al. [12] 11 12 86.6 81.1 80.1 83.6 82.8 82.8
Our method 11 12 92.42 95.45 93.18 87.12 62.88 86.21
Liu and Shah [32] 13 12 72.29 61.22 64.27 70.59 - 67.09
Reddy et al. [33] 13 12 81.0 70.9 79.2 64.9 - 74.0
Kaaniche and Bremond [34] 13 12 75.34 67.11 69.5 74.95 - 71.73
Our method 12 12 86.11 93.06 73.61 80.56 - 83.34

all the action classes from all the views. By designing a novel non-linear kernel
function, we combine low-level visual cues, mid-level correlation features and
high-level action class-view label pair information in a unified and principled
framework. Extensive experiments on multi-view IXMAS and MuHAVi datasets
have demonstrated that our method outperforms the state-of-the-art algorithms
for view-invariant action recognition.
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