
 

 

 
Abstract 

 
Human action recognition is a challenging problem 

due to the large changes of human appearance in the cases 
of partial occlusions, non-rigid deformations and high 
irregularities. It is difficult to collect a large set of training 
samples with the hope of covering all possible variations of 
an action. In this paper, we propose an online recognition 
method, namely Incremental Discriminant-Analysis of 
Canonical Correlations (IDCC), whose discriminative 
model is incrementally updated to capture the changes of 
human appearance and thereby facilitates the recognition 
task in changing environments. As the training sets are 
acquired sequentially instead of being given completely in 
advance, our method is able to compute a new discriminant 
matrix by updating the existing one using the eigenspace 
merging algorithm. Experimental results on both 
Weizmann and KTH action data sets show that our method 
performs better than state-of-the-art methods on both 
accuracy and efficiency. Moreover, the robustness of our 
method is demonstrated on the irregular action 
recognition. 
 

1. Introduction 
Recognizing human actions has recently attracted 

increasing interests from computer vision for a wide range 
of promising applications, such as video indexing, visual 
surveillance, human-computer interaction, sports video 
analysis, and intelligent systems.  

As motion speeds and body sizes are associated with 
individuals, the same action executed by different persons 
may exhibit large variations; while the environmental 
conditions such as lighting and view point may make the 
observations of different actions become similar. In order 
to reduce the variations of actions within the same class and 
suppress the environmental contributions to the similarities 
of actions in different classes, our method maximizes the 
canonical correlations of actions within the same class and 
minimizes the canonical correlations of actions between 
different classes. In the proposed algorithm for action 

recognition, each action is represented by an orthogonal 
linear subspace of sequential images and the similarity 
between two actions is defined by the canonical correlation 
of the corresponding two subspaces. We do not take into 
account the temporal dynamics of an action and in many 
cases several principal images even a single image is 
sufficient to recognize what a person is doing.  

  Another problem in action recognition rises from high 
irregularities of actions undergoing various non-stationary 
scenarios. Taking the walk action for example, people may 
walk with a dog, swinging a bag, carrying a briefcase or 
partially occluded by other objects. It is difficult to account 
for all the possible variations of an action during learning 
the discriminative model.  In order to make the recognition 
task adapt to the changing image observations, we aim to 
find a discriminative model that can be online learned to 
describe the changes of human appearance and accurately 
classify the actions even in the irregular performances. Our 
method is capable of online updating the discriminative 
model with capturing images as the new training data, 
therefore the updated discriminative model can reflect the 
appearance variations. By merging eigenspace models [20], 
the proposed method updates the principal components of 
the total canonical correlations and between-class 
canonical correlations separately, and then computes the 
discriminant components directly from both updated 
principal component sets. To improve the computation 
efficiency of eigen-analysis, the sufficient spanning set [20] 
is adopted in the solution. 

2. Introduction 

2.1. Action recognition 
Many approaches for human action recognition have 

been proposed in recent decades. Wang and Suter [1] used 
kernel principal component analysis to obtain the 
low-dimensional representation of human silhouette and 
introduced factorial conditional random field to model the 
motion. Their framework can effectively recognize human 
activities performed by different people with different body 
builds as well as different motion styles and speeds. Jia and 
Yeung [2] reported a new manifold embedding method to 
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discover both the local spatial and temporal discriminant 
structures of human silhouette. They designed a two-stage 
recognition scheme to improve the recognition on low 
sensitivity to the temporal shape variation in the same 
action. Rodrigue et al. [3] introduced a template-based 
method for action recognition which is capable of capturing 
intra-class variability by synthesizing a single Action 
MACH filter for a given action class. Jhuang et al. [5] 
applied a biological model of motion processing to the 
action recognition by accounting for the dorsal stream of 
the visual cortex. Some other approaches [7-10, 12-14] 
extracted local spatio-temporal features to exploit rich and 
intrinsic representation and introduced statistical models to 
classify the action in large intra-class variations. 

However, most of these approaches offline learn the 
recognition model and lack the adaptability to classify the 
different irregular actions which are not included in the 
training data. Our method can online efficiently update the 
discriminative model to learn the changes of human 
appearance with the superior adaptability to recognize high 
irregular actions. Moreover, to address the intra-class 
variation problem, our method maximizes the canonical 
correlations of within-class image sets and minimizes the 
canonical correlations of between-class sets.   

2.2. Incremental learning 
Recently, a number of incremental learning approaches 

have been proposed and applied to computer vision. Hall et 
al. [15] proposed Incremental Principle Component 
Analysis (IPCA) based on the update of covariance matrix 
through a residue estimating procedure. Then they 
improved their method by merging and splitting eigenspace 
models that allow a chunk of new samples to be learned in a 
single step [20]. Pang et al. [16] proposed an Incremental 
Linear Discriminant Analysis (ILDA) in two forms: 
sequential ILDA and chunk ILDA. The discriminant 
eigenspace is updated for classification when bursts of data 
are added to an initial discriminant eigenspace in the form 
of random chunks. As an improvement of ILDA, Kim et al. 
[17] applied the concept of the sufficient spanning set 
approximation in updating the between-class scatter matrix, 
the projected data matrix as well as the total scatter matrix. 
Lin et al. [18] handled with the online update of 
discriminative models for tracking objects undergoing 
large pose and lighting changes. In the image set-based 
recognition, Kim et al. [22] proposed an incremental 
method of learning orthogonal subspace. With the concept 
of the sufficient spanning set, the algorithm separately 
updates the principal components of the class correlation 
and total correlation matrices, and then computes the 
orthogonal components of the updated few principal 
components. 

 Many of these methods just combine all examples of a 

class together and do not exploit the concept of multiple 
sets in a single class. Our method maximizes the canonical 
correlations between multiple sets within the same class 
and is more robust to the intra-class changes. 

3. Background 
Table 1 demonstrates the important notations used 

throughout the paper. 
 

Notations Descriptions 

iX  i -th image set with each column describing 
an image 

iC  class label of iX  

iP  orthonormal basis matrix representing the 
linear subspace of iX  

T  discriminant transformation matrix 

bS , tS  transformed canonical correlations of 
between-class sets and total sets 

V , �  eigenvector and eigenvalue matrices of bS  

U , �  eigenvector and eigenvalue matrices of tS  
m  number of image sets 

Table1:  Notations. 
 

By analogy to the optimization concept of LDA [21], 
Discriminant-Analysis of Canonical Correlations (DCC) 
[19] introduces a linear discriminative function to 
maximize canonical correlations of within-class sets and 
minimize canonical correlations of between-class sets. 
Assume m  image sets are given as },...,,{ 21 mXXX , 
here iX represents a matrix with each column describing an 
image. iX  belongs to one action class denoted by iC . 

A d -dimensional linear subspace of iX  is represented by 

an orthonormal basis matrix dN
i RP �� s.t. T

iii
T
ii PPXX �� . 

i� and iP are the eigenvalues and eigenvector matrices of 
the d largest eigenvalues, and N is the dimension of column 
vector. The discriminant transformation matrix 

nN
n RttT ��� ],...,[ 1 is defined by i

T
i XTY �  to make the 

transformed image sets more discriminative using 
canonical correlations. Orthonormal basis matrices of the 
subspaces of the transformed data are given by 

T
i

T
ii

TT
i

T
i

TT
ii PTPTXTXTYY )()())(( ��� .           (1) 

Canonical correlations are only defined for orthonormal 
basis matrices of subspace. Because i

T PT  is not generally 

orthonormal, the matrix iP is normalized to '
iP so that the 

columns of '
i

T PT  are orthonormal. By the SVD 
computation T

jiijj
TT

i
T QQPTPT ��)()( '' , the similarity of 
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two transformed data sets is defined as the sum of canonical 
correlations: 

}{max ''

,
TPQQPTtrF T

i
T
ijjij

T

QQij
jiij

�  .                        (2) 

T is determined to maximize the similarities of any pairs of 
within-class sets and minimize the similarities of pair-wise 
sets of different classes 

� �
� �

� �

� �� m
i Bl il

m
i Wk ik

T
i

i

F

F
T

1

1maxarg  .                         (3) 

The two index sets }|{ iji CCjW �� and }|{ iji CCjB 	�  

respectively denote the within-class and between-class sets 
for a given set of class iC . By the simple linear algebra  

2/))(( '''''' TQPQPQPQPTITPQQPT T
ijijijijijij

TT
i

T
ijjij

T 


�  ,   (4) 

the discriminative function is rewritten as 
)(/)(maxarg TSTtrTSTtrT w

T
b

T

T
� ,                       (5) 

where T
ililil

m

i Bl
ilililb QPQPQPQPS

i

)()( ''

1

'' 

���
� �

, }|{ iji CCjB 	� ,  

T
ikikik

m

i Wk
ikikikw QPQPQPQPS

i

)()( ''

1

'' 

���
� �

, }|{ iji CCjW �� .  

Finally the optimal T is computed by eigen-decomposition 
of bw SS 1)( 
 . Without losing generality, we assume in the rest 
of the paper all the iP  are normalized.  

4. Incremental Discriminant-Analysis of 
Canonical Correlations (IDCC) 

Two equivalent criterions to obtain the discriminant 
transformation matrix T are given by 

� �
� �

� �
� �

� �

� �

� �

� � � m
i Bl il

m
i Th ih

Tm
i Bl il

m
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T
i

i

i

i

F

F

F

F

1

1

arg
1

1
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maxmax .        (6) 

}|{ iji CCjW �� , }|{ iji CCjB 	� , iii BWT �� indexes the 

total sets. � �� �

m
i Wk iki

F
1

 and � �� �

m
i Bl ili

F
1

 respectively 

represent the canonical correlations of within-class sets and 
between-class sets. The total canonical correlations are 
represented by  �� �� �

m
i Th ihi

F
1

 � �� � � �� �
� m

i Bl il
m
i Wk ik ii

FF
11

. 

In this paper, the algorithm uses the second criterion in 
Eq.6. By the simple linear algebra (Eq. 4), the 
discriminative function is 

)(/)(max TSTtrTSTtrT t
T

b
T

T
� ,                        (7) 

where T
ililil

m

i Bl
ilililb QPQPQPQPS

i
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T
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m
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���
� �

, },..,1|{ mjjTi �� .  

The solution of incremental discriminant-analysis 
canonical correlation includes three steps: updating the 
canonical correlations of the total sets, updating the 
canonical correlations of the between-class sets, and 
computing the discriminant transformation matrix. Note 
that bS and tS are respectively the linear algebra 
transformation (see Eq.4) of between-class canonical 
correlations and total canonical correlations, so the 
proposed algorithm actually involves the update of 
principal components of tS , the update of principal 
components of bS and the computation of T  from the 
updated tS and bS .  

4.1. Updating the total canonical correlations  
Let the total canonical correlations of existing image 

sets be },...,2,1,,,{ miPU i �� , here U and �  respectively 
denote the eigenvectors and eigenvalues of tS , 

s.t. T
t UUS �� , and dN

i RP �� is a normalized orthonormal 
basis matrix of the i th existing set. Assume 1�mP  is the 
normalized orthonormal basis matrix of a new data set, the 
update is defined as 

miUPPU mi ,...,2,1),(),,,( ''
11 ���� �� .           (8) 

Assume �
�

������ 

�
m

i

T
miiimmmiiimm QPQPQPQPA

1
1,,111,,11 ))((2 ,  

then the updated tS is computed by AUUASS T
tt �����' .  

We wish to calculate the eigenvectors 'U  and eigenvalues 
'�  of '

tS , i.e. T
t UUS '''' �� . To reduce the dimension of 

eigenvalue problem, the concept of the sufficient spanning 
set [20] is used. Let the SVD of A be TWWA 
� , here 
W and 
 are respectively the eigenvectors and eigenvalues. 
The sufficient spanning set of '

tS can be calculated 
by ]),([ WUht �� with h  an orthonormalization function. 

Then 'U is written as tt RU ��'  and tR is a rotation matrix. 
Thus, we solve a smaller eigen-problem to obtain 

tR and '� : 

     
T
ttt

TT
ttt

T
t

T
t

T
ttt

T
t

RRAUUAS

RRUUS
'

'''''

)()( �����������

������ .           (9) 

Suppose that td  and Ad  are the number of 
eigenvectors of U and W respectively, the matrix 

tt
T
t S �� ' has the reduced size Att ddd ��' and the 

eigen-analysis of '
tS takes only ))(( 3

At ddO � computations. 
Let m be the number of existing training sets, the 
eigen-analysis of A  requires )( 3mO  and the total cost of our 
incremental method is ))(( 33 mddO At �� . While the 
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eigen-analysis of '
tS in batch mode requires )( 6mO . 

Typically, td  and Ad are (much) less than 2m and m  
respectively.  

4.2. Updating the between-class canonical 
correlations 

The between-class canonical correlations of existing 
data sets are represented by },...,2,1,,,,{ miCPV ii �� , here 
V  and �  are the eigenvectors and eigenvalues of bS , 

s.t. T
b VVS �� . iP and iC  respectively represent the 

normalized orthonormal component matrix and class label 
of the i th set. Given a new image set represented by an 
orthonormal basis matrix 1�mP and the corresponding class 
label 1�mC , the update is described as  

    miVCPCPV mmii ,...,2,1),(),,,,,( ''
112 ���� ��� .         (10) 

The updated bS is computed by FVVS T
b ���' , where 

�
�

������ 

�
Ei

T
miiimmmiiimm QPQPQPQPF ))((2 1,,111,,11

and }|{ 1�	� mj CCjE . 

imQ ,1� and 1, �miQ are obtained by the SVD solution 
T

immim
TT

i QQPTTP ,11,1 ��� �� . Let Z be the eigenvectors of 

F obtained by SVD solution, the sufficient spanning set of 
'
bS can be given by ]),([ ZVhb �� . bbRV ��' with bR a 

rotation matrix. Accordingly, the new small dimensional 
eigen-problem is expressed by 

T
bbb

TT
bbb

T
b

T
b

RRFVVS

VVS
''

''''

)( ����������

��      (11) 

Let kn be the number of sets belonging to class k , then 
the eigen-analysis of F costs ))(( 3

1�



mCnmO . Suppose bd  

and Fd  are the number of eigenvectors of V  and F  
respectively, the matrix  bb

T
b S �� '  has the reduced 

size Fbb ddd ��' . The eigen-analysis of '
bS requires at most 

))(( 3
Fb ddO � , whereas the eigen-analysis of the new 

between-class canonical correlations in batch mode 
costs ))(( 322 �
 k knmO with �� k knm .Typically, bd and 

Fd are respectively (much) less than )( 22 �
 k knm  and 

)(
1�



mCnm . 

4.3. Updating the discriminant transformation 
matrix  

The discriminant transformation matrix is computed 
using the updated total canonical correlations and 
between-class canonical correlations: 

'''''
3 ),,,( TVU ����  .                           (12) 

In order to further reduce the computation complexity, we 
introduce new sufficient spanning set to change 
eigen-analysis into a smaller dimensional eigenvalue 
problem requiring cost of )( 3'

bdO rather than )( 3'
tdO . 

Let 2/1'' 
��UG , then IGSG t
T �' . As the denominator of the 

second criterion in Eq.6 is the identity matrix, the problem 
is  to  find  the  discriminative  components  that  
maximize GSG b

T ' , s.t. T
b

T HHGSG ��' . The final 
discriminant components are obtained by GHT �' . The 
sufficient spanning set of the projection data can be 
constructed by ])([ 'VGh T�� and the eigenvalue problem is  

TTTT

TT
b

T

RRGVVG

RRGSG

������

����
'''

'
.                      (13) 

The updated discriminant matrix is given by 
RGGHT ���' .                                        (14) 

 
Algorithm Incremental Discriminant-Analysis Canonical 

Correlations  
Input:    The total and between-class canonical correlations 
eigen-models },...,2,1,,,,,,{ miCPVU ii ��� of the existing 
data sets  and the normalized orthonormal basis matrix 1�mP  
of the new data set with its label 

1�mC  

Output:   Updated discriminant matrix 'T  
 
1. Update the total canonical correlations. 

Compute A  and TWWA 
� . Set t� by ]),([ WUht �� . 

Compute the eigenvectors tR of t
TT

t AUU ���� )( . 

tt RU ��' . 
2. Update the between-class canonical correlations. 

Compute F and TZZF �� . Set b� by ]),([ ZVhb �� . 
Compute the eigenvectors bR of b

TT
b FVV ���� )( . 

bbRV ��' . 
3. Update the discriminant matrix.  
   Compute 2/1'' 
��UG , ])'([ VGh T�� and the eigenvectors 

R of ��� GVVG TTT ''' . RGT ��' .  
Table2: Procedure of IDCC 

 
Let '

bd be the number of eigenvectors 'V , the time for 

eigen-problem in Eq.13 takes )( 3'
bdO . The dimension '

td of 
'U  is usually larger than '

bd , so the computation  efficiency  

of  'T   improves  from  )( 3'
tdO   to )( 3'

bdO . The procedure 
of the complete IDCC algorithm is listed in Table 2. 
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5. Experiments 
We have conducted experiments to evaluate the 

performance of the proposed method on two publicly 
available datasets: KTH human dataset and Weizmann 
human dataset. For all experiments, the non-optimized 
Matlab codes run on a Dell PC with Intel Pentium D 3.4 
GHz CPU and 1G RAM. 

5.1. Weizmann action recognition 
We have tested the proposed method on the Weizmann 

action dataset [11]. There are about 90 low-resolution 
(180�144, 25fps) video sequences showing nine different 
subjects, each performing 10 actions including bending 
(bend), jumping jack (jack), jumping-forward-on-two-legs 
(jump), jumping-in-place-on-two-legs (pjump), running 
(run),  skipping (skip), galloping-sideways (side), walking 
(walk), waving-one-hand (wave1) and waving-two-hands 
(wave2). The centered silhouettes extracted in [11] are 
normalized to the same 64�48 dimension and converted 
into 3072 dimensional vectors in a raster-scan manner. The 
classification accuracy is evaluated under nine-fold cross 
validation. Each time we take the silhouette frames of eight 
subjects for training and use those of the remaining one 
subject for testing. The training dataset is further 
partitioned into an initial set which is used for learning the 
initial discriminative model and the remaining sets which 
are added successively for re-training. 

The efficiency and accuracy of IDCC have been 
examined by comparing it with DCC [19], ILDA [16] and 
IPCA [15]. Particularly, we are interested in evaluating the 
discriminability and execution time of IDCC with the 
increasing datasets. In IDCC and DCC, the best dimension 
of the linear subspace of each image set is around 19 to 
represent 99 percent information and the Nearest Neighbor 
(NN) classification is utilized based on the similarity 
between subspaces. PCA is performed to learn the linear 
subspace of each set in IDCC and DCC. For ILDA and 
IPCA, the dimensions of eigenspace are set to 8 and 28 
respectively, and the k-Nearest Neighbor (k=10) is used for 
classification. Figure 1 demonstrates the recognition 
accuracy of IDCC and the related methods with the 
increasing training data. IDCC achieves nearly the same 
accuracy as DCC, provided that enough components of the 
total and between-class canonical correlations are stored. 
10NN-ILDA and 10NN-IPCA perform worse since they 
are based on single image matching without exploiting the 
multiple image sets. The comparison of computational 
costs between DCC and IDCC is illustrated in Figure 2. 
Whereas the execution time of DCC increases significantly 
with the training samples arriving successively, the time of 
the IDCC remains low. Table 3 concludes the mean and 
standard deviation of recognition accuracy for different 
methods. Both IDCC and DCC provide significant 

improvements on recognition accuracy over IPCA and 
ILDA. Table 4 demonstrates the recognition rates of IDCC 
as well as some art-of-state methods, and all these methods 
adopt the evaluation scheme of leaving one out cross 
validation. As shown in Table 4, our method is 
significantly superior to the previous methods. 
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Figure1: Recognition accuracy of incremental solution. 
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Figure 2: Computation efficiency of IDCC and DCC. 

 
Methods Weizmann 

Accuracy (%) 

10NN-IPCA 86.09� 0.03(28) 
10NN-ILDA 65.15� 0.08(8) 
DCC 98.89� 0.02(19) 
IDCC 98.89� 0.02(19) 

Table 3: Mean and standard deviation of recognition accuracy for 
different methods. The number in parentheses represents the 
dimensionality of linear subspace. 
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Methods Weizmann    
Accuracy (%) 

Our method 98.9 
Wang and Suter [1] 97.8 
Zhang et al. [13] 92.9 
Ali et al. [6] 92.6 
Jia and Yeung [2] 90.9 
Scovanner et al. [14] 84.2 
Niebles and Li [7] 72.8 

Table 4: Recognition accuracy of some related recognition 
approaches. All these approaches use the evaluation scheme of 
leaving one out cross validation 

5.2. KTH action recognition 
The KTH human action dataset [12] contains six types of 

human actions: walking, jogging, running, boxing, hand 
waving and hand clapping. These actions are performed 
several times by twenty-five subjects in four different 
scenarios: outdoors (s1), outdoors with scale variation (s2), 
outdoors with different clothes (s3) and indoors with 
lighting variation (s4). Some body tracking methods (e.g. 
[23]) can be applied to locate the areas and the geometric 
centers of human bodies in each frame, and the centered 
body region is normalized to the size of 50�50. Since the 
scenario s2 is only the scale variation of s1, the normalized 
human image of s2 are very similar to that of s1 and we 
conduct the experiment on s1, s3 and s4. Leave-one-out 
cross-validation is performed to test the proposed method, 
i.e. for each run the image sets of 24 subjects are used for 
training and the image sets of the remaining subject are for 
testing. Figure 3 demonstrates the recognition rates of 
incremental solution between IDCC, DCC, IPCA and 
ILDA. Table 5 shows the mean and standard deviation of 
recognition accuracy for different methods on s1, s3 and s4 
datasets of KTH. Moreover, we compare the recognition 
rates between some related recognition methods in Table 6.  
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Figure 3: Recognition rates of incremental solutions.  

 KTH s1 KTH s3 KTH s4 Avg 
10NN- 
IPCA 

51.46 
� 0.16 

49.82 
� 0.14 

50.69 
� 0.15 

50.66 
� 0.15 

10NN- 
ILDA 

48.07 
� 0.13 

39.77 
� 0.13 

53.62 
� 0.08 

47.15 
� 0.11 

DCC 94.67 
� 0.05 

89.33 
� 0.10 

97.67 
� 0.02 

93.89 
� 0.06 

IDCC 96.00 
� 0.06 

90.67 
� 0.10 

98.67 
� 0.02 

95.11 
� 0.06 

Table 5: Comparisons of recognition rates. s1, s3, s4 corresponds 
to different conditions of the KTH database and Avg to the mean 
performance across the sets.  
 

Methods KTH   Accuracy 
(%) 

Our method 95.1 
Zhang et al. [13] 91.3 
Savarese et al. [8] 86.8 
Wang et al. [4] 85.0 
Niebles et al. [9] 81.5 
Dollar et al. [10] 81.7 

Table 6: Recognition accuracy on KTH dataset comparison 
between related recognition approaches. All these approaches use 
the evaluation scheme of leaving one out cross validation 

5.3. Robustness test 
To evaluate the adaptability and robustness of IDCC to 

the irregular actions in changing scenarios, we conduct the 
experiment on 10 video sequences of people walking in 
various difficult scenarios [11], including walking with a 
dog, walking when swinging a bag, walking in a skirt, 
walking with partially occluded legs, walking occluded by 
pole, sleepwalking, limping, walking with knees up, 
walking when carrying a briefcase, and normal walking.  

In this experiment, the testing action is recognized on a 
frame-by-frame basis and the recognition accuracy is 
measured in terms of the percentage of the correctly 
recognized frames among the whole sequence. At each 
frame, we collect its local temporal neighbors as test image 
set and acquire the class label by computing the canonical 
correlations between the test set and those training sets. 
With the time process, several recognized frames are 
accumulated to construct the new training set for online 
re-training the discriminative model. For the trade-off 
between computational efficiency and effectiveness, we 
update the discriminative model at each interval of several 
frames rather than each frame. Table 7 gives the 
comparison results of LSTDE [2], DCC and IDCC, from 
which we can see that IDCC indeed flexibly adapts to the 
irregular action recognition from ever-changing silhouettes 
via online updating the discriminative model.  
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Recognition accuracy (%) Test sequence 
LSTDE DCC IDCC 

Walk with a dog 90.74 100 100 
Swinging a bag 74.58 100 100 
Walk in a skirt 92.16 80.49 85.37 
Occluded feet 71.19 77.55 93.88 
Occluded by pole - 84.62 92.31 
Moonwalk 56.06 78.57 94.64 
Limp walk 83.96 87.50 90.63 
Walk with knees up 66.02 64.52 72.10 
Carry a briefcase 92.86 100 100 
Normal walk 95.16 100 100 

Table 7: Comparison of robustness test results between LSTDE, 
DCC and IDCC. 

6. Conclusions 
We have presented  a  novel  Incremental  Discriminant- 

Analysis Canonical Correlation (IDCC) method and its 
application to the online human action recognition in 
various changing scenarios. By efficiently updating the 
discriminative model, IDCC can adapt to the appearance 
variations of human and accurately recognize the action 
even in high irregular performance. Experiments on both 
regular and irregular actions have shown the superior 
discriminability in classification, significant adaptability to 
changing environments and high computational efficiency 
of learning.  
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